How to cluster data in a histogram ?
10 次查看(过去 30 天)
显示 更早的评论
How to cluster data in a histogram ?
Desired output

Input
A = duration({'00:01:01'
'00:00:53'
'00:00:55'
'00:00:54'
'00:00:54'
'00:00:53'
'02:45:08'
'00:01:33'
'00:00:57'
'00:00:58'
'00:00:51'
'00:00:45'
'00:01:03'
'00:00:56'
'00:00:45'
'00:26:52'
'00:01:12'
'00:00:41'
'00:00:56'
'00:01:16'
'00:01:47'
'00:09:22'
'00:00:40'
'00:00:38'
'00:00:48'
'00:00:38'
'00:00:42'
'00:00:42'
'00:01:06'
'00:01:00'
'00:00:43'
'00:00:47'
'00:00:43'
'00:00:50'
'00:00:52'
'00:01:20'
'00:01:35'
'00:00:54'
'00:01:05'
'00:02:07'
'00:00:43'
'00:00:39'
'00:29:36'
'00:00:39'
'00:00:39'
'00:01:01'
'00:01:09'
'00:01:12'
'00:01:11'
'00:01:12'
'00:01:06'
'00:01:06'
'00:01:00'
'00:01:15'
'00:01:08'
'00:00:39'
'00:00:59'
'00:00:54'
'00:01:25'
'00:01:01'
'00:01:03'
'00:01:03'
'00:00:56'
'00:01:19'
'00:01:05'
'00:01:00'
'00:01:09'
'00:01:12'
'00:00:52'
'00:00:40'
'00:01:09'
'00:01:00'
'00:01:04'
'00:00:57'
'00:02:07'
'00:02:44'
'00:00:51'
'00:01:22'
'00:01:10'
'00:01:07'
'00:01:07'
'00:00:48'
'00:00:59'
'00:01:02'
'00:00:48'
'00:00:49'
'00:00:56'
'00:01:03'
'00:00:53'
'00:01:23'
'00:00:40'
'00:01:25'
'00:01:15'
'00:01:13'
'00:02:14'
'00:01:08'
'00:00:53'
'00:01:00'})
binLimits = [min(A) max(A)];
binWidth = duration('00:00:5');
[counts,binEdges] = histcounts(A, 'BinLimits',binLimits,'BinWidth',binWidth);
histogram(A,'binEdges',binEdges,'FaceColor','k','EdgeColor','k');
0 个评论
采纳的回答
Cris LaPierre
2022-11-3
You need to define the criteria for what makes a cluster and what makes an outlier. Once you know how you will define that, then you can use rmoutliers to apply your criteria and remove the outliers.
To me, it looks like you want to use quartiles. I find viewing this with a boxchart is easiest. Note that MATLAB does not accept the duration data type for outlier detection. Use the minutes function to covert your durations into numeric values, and vice versa.
A = duration({'00:01:01';'00:00:53';'00:00:55';'00:00:54';'00:00:54';'00:00:53';'02:45:08';'00:01:33';
'00:00:57';'00:00:58';'00:00:51';'00:00:45';'00:01:03';'00:00:56';'00:00:45';'00:26:52';'00:01:12';
'00:00:41';'00:00:56';'00:01:16';'00:01:47';'00:09:22';'00:00:40';'00:00:38';'00:00:48';'00:00:38';
'00:00:42';'00:00:42';'00:01:06';'00:01:00';'00:00:43';'00:00:47';'00:00:43';'00:00:50';'00:00:52';
'00:01:20';'00:01:35';'00:00:54';'00:01:05';'00:02:07';'00:00:43';'00:00:39';'00:29:36';'00:00:39';
'00:00:39';'00:01:01';'00:01:09';'00:01:12';'00:01:11';'00:01:12';'00:01:06';'00:01:06';'00:01:00';
'00:01:15';'00:01:08';'00:00:39';'00:00:59';'00:00:54';'00:01:25';'00:01:01';'00:01:03';'00:01:03';
'00:00:56';'00:01:19';'00:01:05';'00:01:00';'00:01:09';'00:01:12';'00:00:52';'00:00:40';'00:01:09';
'00:01:00';'00:01:04';'00:00:57';'00:02:07';'00:02:44';'00:00:51';'00:01:22';'00:01:10';'00:01:07';
'00:01:07';'00:00:48';'00:00:59';'00:01:02';'00:00:48';'00:00:49';'00:00:56';'00:01:03';'00:00:53';
'00:01:23';'00:00:40';'00:01:25';'00:01:15';'00:01:13';'00:02:14';'00:01:08';'00:00:53';'00:01:00'});
B = minutes(A)
boxchart(B)
Here, outlers are indicated with the 'o' marker. Outliers are values that are more than 1.5 · IQR away from the top or bottom of the box. You indicate there should be 4, but we see the default definition classifies more, so you will need to use a custom definition.
I find using the Clean Outlier Data task in a live script is a quick and interactive way to find the desired threshold. Since tasks don't work, here, I'll just use rmoutliers with a threshold of 20 applied.
% Remove outliers
B= rmoutliers(B,"quartiles","ThresholdFactor",20);
% View results
boxchart(B)
% convert back to duration
A = minutes(B);
A.Format = 'hh:mm:ss'
% Original code for creating a histogram
binLimits = [min(A) max(A)];
binWidth = duration('00:00:5');
[counts,binEdges] = histcounts(A, 'BinLimits',binLimits,'BinWidth',binWidth);
histogram(A,'binEdges',binEdges,'FaceColor','k','EdgeColor','k');
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!