GA fitness function with variables in a summation

1 次查看(过去 30 天)
What is the best way to define the following fitness function for GA optimization?
where are the variables to be found with GA-toolbox. N can be a positive integer.
  2 个评论
Nima
Nima 2022-11-8
I just made a change in the formula! So ist frequency dependent impedance and as an example.

请先登录,再进行评论。

采纳的回答

Star Strider
Star Strider 2022-11-8
编辑:Star Strider 2022-11-8
I still do not completely understand what you want to do.
Perhaps this —
Z = randn(16,1) + 1j*randn(16,1); % Creeate Data
omega = (0:15).'; % Creeate Data
objfcn = @(b,x) b(1) + 1i.*x.*b(2) + 1./(b(3) + 1j.*x.*b(4)); % Objective Function
Parms = 4; % Number Of Parameters To Be Estimated
ftnsfcn = @(b) norm(Z - objfcn(b,omega)); % Fitness Function
[B,fval,exitflag,output,population,scores] = ga(ftnsfcn, Parms, [],[],[],[], zeros(1,Parms)); % Genetic Algorithm Call
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
fprintf('\nR\t= %15.3f\nL\t= %15.3f\nG\t= %15.3f\nC\t= %15.3f\n',B)
R = 0.000 L = 0.007 G = 1.275 C = 0.760
fprintf('\nFinal Fitness Value = %15.6f\n',fval)
Final Fitness Value = 6.843630
fprintf('\nGenerations = %6d\n', output.generations)
Generations = 157
fprintf('\nMessage: %s\n',output.message)
Message: Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
figure
plot(omega, real(Z), 'pm', 'DisplayName','Re(Z)')
hold on
plot(omega, imag(Z), 'pc', 'DisplayName','Im(Z)')
plot(omega, real(objfcn(B,omega)), '-m', 'DisplayName','Re(Z_{est})')
plot(omega, imag(objfcn(B,omega)), '-c', 'DisplayName','Im(Z_{est})')
hold off
grid
legend('Location','best')
I do not understand the reason for the summation in the objective funciton, so I do not use it here.
It may be necessary to run ga a few times to get the best fit (save the results each time), however it should be possible to get a decent fit to your data.
EDIT — Corrected typographical errors.
.
  4 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Genetic Algorithm 的更多信息

产品


版本

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by