Partial derivative with respect to x^2

10 次查看(过去 30 天)
Suppose I have a function f
f = (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
how do I take derivative of this function with respect to x^2.
I have used diff(f, x^2) but it is returning an error.
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
diff(f,x^2)
Error using sym/diff
Second argument must be a variable or a nonnegative integer specifying the number of differentiations.

回答(3 个)

David Goodmanson
David Goodmanson 2022-11-18
编辑:David Goodmanson 2022-11-18
Hi Yadavindu,
df/d(x^2) = (df/dx) / (d(x^2)/dx) = (df/dx) / (2*x)
which you can code up without the issue you are seeing.
  5 个评论
Yadavindu
Yadavindu 2022-11-18
so the code would be
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
f1=diff(f,x)
f1 = 
f2= f1/(2*x)
f2 = 
David Goodmanson
David Goodmanson 2022-11-18
yes, although you could write it in one line and toss in a simplify:
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y);
f1 = simplify(diff(f,x)/(2*x))
f1 = (2*x^5*y^3 + 4*x^3*y^3 - x^2*z^2 - 2*x*y + z^2)/(2*x*y*(x^2 + 1)^2)

请先登录,再进行评论。


KSSV
KSSV 2022-11-18
syms x y z
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
dfdx = diff(f,x)
dfdx = 
dfdx2 = diff(dfdx,x)
dfdx2 = 
  1 个评论
Yadavindu
Yadavindu 2022-11-18
Thank you for your reply, however I think, if I take derivative of d(df\dx)\dx = (d^2(f) \ (dx)(dx)) will give double partial derivative rather my question was whether there exist any direct way to calculate (df / d(x^2)).

请先登录,再进行评论。


VBBV
VBBV 2022-11-18
编辑:VBBV 2022-11-18
syms x y z t
f= (x^5*y^3+ z^2*x^2+y*x) / (x^3*y+x*y)
f = 
% t = x^2 % assume x = sqrt(t)
F = subs(f,x,sqrt(t))
F = 
y = diff(F,t)
y = 
Y = subs(y,t,x^2) % back substitute with x
Y = 
  3 个评论
VBBV
VBBV 2023-1-20
If it solved your problem (which i hope it did) pls accept the answer.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Particle & Nuclear Physics 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by