Matrix size and scalar problem using fmincon

2 次查看(过去 30 天)
Hello,
I'm trying to run an optimization reliability problem using fmincon but I got a size problem when I integrate my function to search for the global reliability and thus fmincon cannot return a scalar value.
I don't know exactly where my problem stands so I ask for help.
Here is my code
muL = 2000;
sigL = 200;
R1 = 1-9.92*10^-5;
R2 = 1-1.2696*10^-4;
R3 = 1-3.87*10^-6;
Sr1_min = sqrt(((((1.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr1_max = sqrt(((((2.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr2_min = sqrt(((((1.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr2_max = sqrt(((((2.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr3_min = sqrt(((((1.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
Sr3_max = sqrt(((((2.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
lb = [Sr1_min,Sr2_min,Sr3_min];
ub = [Sr1_max,Sr2_max,Sr3_max];
A = [];
B = [];
Aeq = [];
Beq = [];
d0 = (lb+ub)/5;
fun = @(d) parameterfun(d,muL,sigL,R1,R2,R3);
const = @(d) nonlcon(d,muL,sigL,R1,R2,R3);
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
[d,fval] = fmincon(fun,d0,A,B,Aeq,Beq,lb,ub,const,options);
Warning: Inf or NaN value encountered.
Error using fmincon
Supplied objective function must return a scalar value.
function Rs = parameterfun(d,muL,sigL,R1,R2,R3)
%
mu_Sr1 = muL+norminv(R1)*sqrt((sigL)^2+(d(1))^2);
mu_Sr2 = muL+norminv(R2)*sqrt((sigL)^2+(d(2))^2);
mu_Sr3 = muL+norminv(R3)*sqrt((sigL)^2+(d(3))^2);
%
Y1_mean = muL-mu_Sr1;
Y2_mean = muL-mu_Sr2;
Y3_mean = muL-mu_Sr3;
%
Y1_std = sqrt((d(1))^2+(sigL)^2);
Y2_std = sqrt((d(2))^2+(sigL)^2);
Y3_std = sqrt((d(3))^2+(sigL)^2);
%
Y_mean = [Y1_mean Y2_mean Y3_mean];
Y_std = [(Y1_std^2) (sigL)^2 (sigL)^2; (sigL)^2 (Y2_std)^2 (sigL)^2; (sigL)^2 (sigL)^2 (Y3_std)^2];
inv_Y_std = inv(Y_std);
det_Y_std = det(Y_std);
fy = @(y) (1/(2*pi)^(3/2).*(det_Y_std)^0.5).*exp(-(1/2).*transpose(y-Y_mean).*inv_Y_std.*(y-Y_mean));
%
Rs = 1-integral(fy,-inf,0,'ArrayValued',true);
%pf = 1-Rs;
%
end
function [c,ceq] = nonlcon(d,muL,sigL,R1,R2,R3)
muL = 2000;
sigL = 200;
c(1) = 1.5 - ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL);
c(2) = 1.5 - ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL);
c(3) = 1.5 - ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL);
c(4) = ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL) - 2.5;
c(5) = ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL) - 2.5;
c(6) = ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL) - 2.5;
c(7) = 0.08 - (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))));
c(8) = 0.08 - (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))));
c(9) = 0.08 - (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))));
c(10) = (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2))))) - 0.2;
c(11) = (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2))))) - 0.2;
c(12) = (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2))))) - 0.2;
ceq = [];
end
Thank you in advance.
Paul

采纳的回答

William Rose
William Rose 2022-11-23
It appears that the value Rs returned by parameterfun() is a vector (or array). Rs is a vector because function fy(), inside the integral on the right hand side of Rs, is a vector (or array). Add another calculation inside parameterfun(), after Rs is computed, to convert the vector Rs to a scalar, which is a global measure of reliability. parameterfun() should return this scalar, instead of the vector Rs.
fmincon() minimizes a function. If you want to maximize global reliability, insert a minus sign, or a reciprocal, somewhere.
  18 个评论
Torsten
Torsten 2022-11-29
I wanted to compare the results from fmincon when using integral3 and mvncdf in one run.
So I called fmincon first with flag = 1 to compute with integral3 and called fmincon thereafter with flag = 2 to compute with mvncdf.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by