extract values from a table
43 次查看(过去 30 天)
显示 更早的评论
I have a mat file that is a table with a lot of values for temperatures on each given day of each month of several years for different location. I need to extract from this file one location and the mean of each month. Everything I tried doesnt work.
4 个评论
Viktoriya
2022-11-30
The file is to large to get attached and I didnt save the code, but I tried to use the find function and it failed.
Voss
2022-11-30
Can you make a smaller table (i.e., less data but similar format), save that to a .mat file, and upload it?
For example, maybe just the first several rows of the table
t_new = t(1:10,:); % just the first 10 rows
save('table.mat','t_new');
(Maybe it's better to try to save the first 1000 or 100 rows instead of 10, depending on how stuff is arranged in the table.)
Alternatively, maybe a screen shot will be enough to figure it out.
Viktoriya
2022-11-30
basically that's the data I have (it continues further). I tried to do this to extract the data, bt it doesnt give much:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1214218/image.png)
s =load('data_sectionM.mat') ;
year=SECTION_M(1,:);
month=SECTION_M(2,:);
day=SECTION_M(3,:);
temp=SECTION_M(67,:);
mydata=[year;month;day;temp];
newtable=table(year, month, day, temp)
回答(2 个)
Cris LaPierre
2022-11-30
You describe selecting data using multiple criteria, and a desire to compute a summary stat based on those criteria. To me, that suggests using groupsummary. I find logical indexing works well for selecting rows to extract.
% Create a sample data set
date = datetime(2020,1,1):days(1):datetime('now');
date=date';
location = ones(size(date));
location(2:2:end)=2;
data=rand(size(date));
Tbl = table(date,location,data)
Tbl = 1065×3 table
date location data
___________ ________ ________
01-Jan-2020 1 0.66702
02-Jan-2020 2 0.56336
03-Jan-2020 1 0.26084
04-Jan-2020 2 0.93963
05-Jan-2020 1 0.81655
06-Jan-2020 2 0.05855
07-Jan-2020 1 0.16368
08-Jan-2020 2 0.037964
09-Jan-2020 1 0.89949
10-Jan-2020 2 0.28405
11-Jan-2020 1 0.27924
12-Jan-2020 2 0.74075
13-Jan-2020 1 0.34463
14-Jan-2020 2 0.39209
15-Jan-2020 1 0.67204
16-Jan-2020 2 0.72051
mnTbl = groupsummary(Tbl,["location","date"],["none","month"],"mean","data")
mnTbl = 70×4 table
location month_date GroupCount mean_data
________ __________ __________ _________
1 Jan-2020 16 0.53365
1 Feb-2020 14 0.40572
1 Mar-2020 16 0.55608
1 Apr-2020 15 0.5417
1 May-2020 15 0.44745
1 Jun-2020 15 0.53494
1 Jul-2020 16 0.49
1 Aug-2020 15 0.43882
1 Sep-2020 15 0.57664
1 Oct-2020 16 0.52817
1 Nov-2020 15 0.57053
1 Dec-2020 15 0.53841
1 Jan-2021 16 0.55658
1 Feb-2021 14 0.6917
1 Mar-2021 15 0.51216
1 Apr-2021 15 0.54087
% Extract location 2, Feb 2021
mnTbl(mnTbl.location==1 & string(mnTbl.month_date)=="Feb-2021","mean_data")
ans = table
mean_data
_________
0.6917
1 个评论
Cris LaPierre
2022-12-1
MATLAB Tables place variables in columns, so I would do something like this based on the code you have shared.
load('data_sectionM.mat') ;
SECTION_M = SECTION_M.';
long = SECTION_M(1,4:end);
lat = SECTION_M(2,4:end);
year=SECTION_M(4:end,1);
month=SECTION_M(4:end,1);
day=SECTION_M(4:end,3);
temp=SECTION_M(4:end,67);
date = datetime(year,month,day);
newtable=table(date, temp);
% Now with the data in a table, you can start analyzing your data.
mnTbl = groupsummary(newtable,"date","month","mean","temp")
Voss
2022-11-30
编辑:Voss
2022-11-30
It looks like, basically row 1 is year, row 2 is month, row 3 is day of month, and row 4 through the end are temperature data for various locations, and that the locations' longitude and latitude are given in columns 1 and 2.
Here's a smaller approximation of that matrix (with random temperatures every day for 2 years at 1 location):
SECTION_M = [ ...
NaN(1,3) 1975*ones(1,365) 1976*ones(1,366); ...
NaN(1,3) repelem(1:12,[31 28 31 30 31 30 31 31 30 31 30 31]) repelem(1:12,[31 29 31 30 31 30 31 31 30 31 30 31]); ...
NaN(1,3) 1:31 1:28 1:31 1:30 1:31 1:30 1:31 1:31 1:30 1:31 1:30 1:31 1:31 1:29 1:31 1:30 1:31 1:30 1:31 1:31 1:30 1:31 1:30 1:31; ...
-179 45 NaN 100*rand(1,365+366); ...
];
disp(SECTION_M);
1.0e+03 *
Columns 1 through 19
NaN NaN NaN 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
NaN NaN NaN 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
NaN NaN NaN 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160
-0.1790 0.0450 NaN 0.0880 0.0562 0.0274 0.0660 0.0245 0.0789 0.0193 0.0785 0.0653 0.0229 0.0116 0.0896 0.0959 0.0906 0.0626 0.0997
Columns 20 through 38
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020
0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040
0.0164 0.0642 0.0851 0.0822 0.0970 0.0702 0.0909 0.0386 0.0772 0.0655 0.0737 0.0180 0.0141 0.0036 0.0453 0.0826 0.0608 0.0201 0.0701
Columns 39 through 57
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230
0.0377 0.0239 0.0768 0.0866 0.0594 0.0559 0.0257 0.0816 0.0757 0.0099 0.0662 0.0845 0.0528 0.0809 0.0722 0.0901 0.0666 0.0984 0.0783
Columns 58 through 76
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0020 0.0020 0.0020 0.0020 0.0020 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
0.0240 0.0250 0.0260 0.0270 0.0280 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140
0.0111 0.0049 0.0618 0.0055 0.0614 0.0312 0.0089 0.0080 0.0831 0.0299 0.0954 0.0332 0.0996 0.0316 0.0996 0.0259 0.0966 0.0954 0.0492
Columns 77 through 95
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0040 0.0040
0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020
0.0501 0.0686 0.0631 0.0383 0.0403 0.0144 0.0269 0.0752 0.0703 0.0588 0.0061 0.0230 0.0869 0.0981 0.0616 0.0628 0.0322 0.0008 0.0502
Columns 96 through 114
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210
0.0313 0.0769 0.0972 0.0323 0.0658 0.0056 0.0399 0.0213 0.0117 0.0831 0.0949 0.0693 0.0755 0.0093 0.0432 0.0172 0.0738 0.0173 0.0446
Columns 115 through 133
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100
0.0752 0.0998 0.0582 0.0393 0.0391 0.0521 0.0941 0.0824 0.0890 0.0349 0.0369 0.0830 0.0870 0.0838 0.0504 0.0041 0.0219 0.0980 0.0095
Columns 134 through 152
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290
0.0681 0.0487 0.0657 0.0533 0.0905 0.0657 0.0150 0.0521 0.0325 0.0461 0.0823 0.0810 0.0721 0.0024 0.0278 0.0334 0.0991 0.0808 0.0656
Columns 153 through 171
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0050 0.0050 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060
0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170
0.0129 0.0123 0.0366 0.0502 0.0441 0.0431 0.0619 0.0005 0.0370 0.0825 0.0837 0.0601 0.0150 0.0947 0.0335 0.0453 0.0457 0.0044 0.0398
Columns 172 through 190
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070
0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060
0.0939 0.0210 0.0773 0.0331 0.0962 0.0848 0.0252 0.0147 0.0332 0.0036 0.0927 0.0592 0.0348 0.0797 0.0209 0.0548 0.0301 0.0277 0.0530
Columns 191 through 209
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070
0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250
0.0720 0.0026 0.0291 0.0382 0.0792 0.0642 0.0485 0.0394 0.0497 0.0934 0.0646 0.0676 0.0735 0.0517 0.0109 0.0676 0.0674 0.0716 0.0140
Columns 210 through 228
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080
0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130
0.0219 0.0286 0.0437 0.0419 0.0868 0.0768 0.0106 0.0268 0.0835 0.0454 0.0325 0.0248 0.0021 0.0922 0.0010 0.0064 0.0997 0.0827 0.0919
Columns 229 through 247
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0090
0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010
0.0136 0.0443 0.0433 0.0857 0.0572 0.0064 0.0943 0.0703 0.0393 0.0224 0.0981 0.0920 0.0352 0.0238 0.0281 0.0645 0.0873 0.0097 0.0948
Columns 248 through 266
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090
0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200
0.0178 0.0865 0.0820 0.0191 0.0332 0.0056 0.0182 0.0741 0.0235 0.0111 0.0130 0.0588 0.0348 0.0716 0.0981 0.0134 0.0104 0.0829 0.0795
Columns 267 through 285
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090
0.0067 0.0482 0.0294 0.0019 0.0102 0.0813 0.0448 0.0735 0.0511 0.0980 0.0801 0.0000 0.0967 0.0707 0.0883 0.0387 0.0506 0.0372 0.0564
Columns 286 through 304
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280
0.0858 0.0607 0.0511 0.0953 0.0909 0.0672 0.0338 0.0229 0.0268 0.0876 0.0958 0.0044 0.0574 0.0548 0.0480 0.0810 0.0646 0.0583 0.0975
Columns 305 through 323
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0100 0.0100 0.0100 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110
0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160
0.0046 0.0384 0.0201 0.0340 0.0317 0.0847 0.0032 0.0856 0.0006 0.0258 0.0707 0.0861 0.0446 0.0664 0.0658 0.0257 0.0925 0.0111 0.0929
Columns 324 through 342
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0120 0.0120 0.0120 0.0120 0.0120
0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040 0.0050
0.0470 0.0585 0.0214 0.0244 0.0350 0.0020 0.0058 0.0541 0.0189 0.0602 0.0218 0.0433 0.0467 0.0316 0.0508 0.0654 0.0178 0.0893 0.0651
Columns 343 through 361
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750
0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120
0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240
0.0257 0.0551 0.0356 0.0420 0.0199 0.0900 0.0123 0.0838 0.0440 0.0232 0.0729 0.0568 0.0899 0.0328 0.0826 0.0561 0.0483 0.0336 0.0469
Columns 362 through 380
1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9750 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120
0.0558 0.0717 0.0624 0.0887 0.0053 0.0207 0.0225 0.0457 0.0990 0.0842 0.0829 0.0630 0.0549 0.0174 0.0598 0.0075 0.0580 0.0251 0.0066
Columns 381 through 399
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310
0.0249 0.0816 0.0850 0.0589 0.0702 0.0580 0.0148 0.0977 0.0952 0.0921 0.0821 0.0416 0.0665 0.0682 0.0920 0.0431 0.0256 0.0752 0.0831
Columns 400 through 418
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190
0.0251 0.0379 0.0639 0.0753 0.0528 0.0806 0.0120 0.0749 0.0751 0.0742 0.0103 0.0087 0.0648 0.0920 0.0360 0.0802 0.0401 0.0234 0.0918
Columns 419 through 437
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090
0.0667 0.0347 0.0372 0.0004 0.0575 0.0571 0.0071 0.0317 0.0873 0.0433 0.0439 0.0961 0.0699 0.0796 0.0235 0.0321 0.0542 0.0150 0.0861
Columns 438 through 456
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280
0.0281 0.0544 0.0979 0.0869 0.0202 0.0943 0.0388 0.0577 0.0791 0.0669 0.0881 0.0439 0.0239 0.0702 0.0990 0.0000 0.0049 0.0080 0.0580
Columns 457 through 475
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0030 0.0030 0.0030 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160
0.0281 0.0902 0.0387 0.0408 0.0537 0.0562 0.0095 0.0039 0.0314 0.0745 0.0863 0.0965 0.0461 0.0272 0.0442 0.0201 0.0731 0.0021 0.0914
Columns 476 through 494
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0050 0.0050 0.0050 0.0050 0.0050
0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040 0.0050
0.0300 0.0601 0.0488 0.0570 0.0186 0.0681 0.0138 0.0560 0.0098 0.0045 0.0589 0.0265 0.0594 0.0865 0.0329 0.0503 0.0532 0.0643 0.0316
Columns 495 through 513
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240
0.0841 0.0221 0.0893 0.0669 0.0526 0.0562 0.0908 0.0957 0.0746 0.0481 0.0274 0.0699 0.0981 0.0011 0.0772 0.0719 0.0733 0.0702 0.0836
Columns 514 through 532
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060
0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120
0.0240 0.0976 0.0577 0.0318 0.0766 0.0655 0.0546 0.0216 0.0932 0.0701 0.0456 0.0672 0.0043 0.0411 0.0210 0.0634 0.0753 0.0146 0.0680
Columns 533 through 551
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0070
0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010
0.0884 0.0260 0.0362 0.0838 0.0649 0.0531 0.0633 0.0323 0.0551 0.0219 0.0059 0.0630 0.0917 0.0909 0.0559 0.0506 0.0381 0.0990 0.0078
Columns 552 through 570
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070
0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200
0.0949 0.0404 0.0398 0.0208 0.0060 0.0923 0.0471 0.0503 0.0301 0.0345 0.0277 0.0675 0.0159 0.0072 0.0745 0.0163 0.0237 0.0693 0.0816
Columns 571 through 589
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080
0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080
0.0819 0.0545 0.0234 0.0569 0.0835 0.0780 0.0091 0.0296 0.0420 0.0572 0.0205 0.0772 0.0297 0.0296 0.0929 0.0808 0.0719 0.0953 0.0018
Columns 590 through 608
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080
0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270
0.0468 0.0059 0.0181 0.0309 0.0155 0.0959 0.0154 0.0718 0.0148 0.0964 0.0972 0.0047 0.0480 0.0222 0.0424 0.0778 0.0173 0.0969 0.0332
Columns 609 through 627
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0080 0.0080 0.0080 0.0080 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090
0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150
0.0793 0.0675 0.0750 0.0680 0.0974 0.0445 0.0380 0.0653 0.0417 0.0559 0.0541 0.0621 0.0471 0.0190 0.0609 0.0410 0.0835 0.0143 0.0655
Columns 628 through 646
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0100 0.0100 0.0100 0.0100
0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0010 0.0020 0.0030 0.0040
0.0927 0.0557 0.0093 0.0796 0.0767 0.0742 0.0443 0.0070 0.0622 0.0579 0.0937 0.0219 0.0081 0.0664 0.0821 0.0249 0.0994 0.0775 0.0107
Columns 647 through 665
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230
0.0292 0.0923 0.0263 0.0787 0.0517 0.0411 0.0713 0.0405 0.0711 0.0444 0.0788 0.0727 0.0770 0.0942 0.0704 0.0505 0.0927 0.0142 0.0849
Columns 666 through 684
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110
0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110
0.0364 0.0241 0.0251 0.0232 0.0365 0.0074 0.0348 0.0177 0.0438 0.0006 0.0310 0.0918 0.0145 0.0523 0.0606 0.0944 0.0400 0.0178 0.0069
Columns 685 through 703
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110
0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300
0.0170 0.0911 0.0560 0.0446 0.0838 0.0290 0.0459 0.0639 0.0147 0.0999 0.0694 0.0608 0.0570 0.0843 0.0938 0.0864 0.0102 0.0973 0.0737
Columns 704 through 722
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120
0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190
0.0457 0.0247 0.0545 0.0605 0.0345 0.0318 0.0513 0.0555 0.0794 0.0242 0.0089 0.0792 0.0738 0.0069 0.0254 0.0643 0.0713 0.0357 0.0210
Columns 723 through 734
1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760 1.9760
0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120
0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0310
0.0006 0.0055 0.0120 0.0662 0.0434 0.0233 0.0125 0.0091 0.0912 0.0461 0.0755 0.0110
Here's how you can get the average temperature for each month across all years (so 12 avg temps total, one per month) at a given location:
month_row = 2;
location_row = 4; % change this to the location you want, e.g., 67
monthly_avg_temp = groupsummary(SECTION_M(location_row,4:end).', SECTION_M(month_row,4:end).', @mean)
monthly_avg_temp = 12×1
59.3405
53.3945
53.9037
49.0855
56.6118
50.8872
47.6641
50.5729
49.9303
54.2795
Or, to get the average temperature for each month in each year (24 avg temps in this case - one per month for 2 years) at a given location:
year_row = 1;
month_row = 2;
location_row = 4; % change this to the location you want, e.g., 67
monthly_avg_temp = groupsummary(SECTION_M(location_row,4:end).', SECTION_M([year_row month_row],4:end).', @mean)
monthly_avg_temp = 24×1
58.6822
57.1949
53.6867
53.0089
52.1626
48.2590
50.6785
48.8743
45.7980
56.9550
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Data Distribution Plots 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)