How to get real and imaginary terms from an expression?

6 次查看(过去 30 天)
I am trying to get real and imaginary terms from the following expression TF. But real(), imag() is not able to give me any solution.
syms s real
ws = 2 * pi * 85000 ;
Lp = 27.13e-6 ;
Cpp = 129.23e-9 ;
Zp = s * Lp + ws * Lp * 1i ;
Zpp = 1 / ( s * Cpp + ws * Cpp * 1i ) ;
TF = Zpp * Zp / ( Zp + Zpp ) ;
These two commands give me following answers.
TFreal = real(TF)
TFreal = 
TFimag = imag(TF)
TFimag = 
You can observe that the answers have real, imag commands in them instead of answers.
  2 个评论
Paul
Paul 2022-12-11
Hi Aditya,
Normally, a transfer function, which I assume is what TF means, is defined as a function of s, which is a complex variable, and all other terms in the tansfer function are all real. But here, we have s defined as real, and other terms in the TF are complex. Can you clarify exactly what this code is intened for?
Aditya Zade
Aditya Zade 2022-12-11
Hey Paul,
Only 's' is a variable which I have defined as a real number.

请先登录,再进行评论。

采纳的回答

Walter Roberson
Walter Roberson 2022-12-11
syms s real
ws = 2 * pi * 85000 ;
Lp = 27.13e-6 ;
Cpp = 129.23e-9 ;
Zp = s * Lp + ws * Lp * 1i ;
Zpp = 1 / ( s * Cpp + ws * Cpp * 1i ) ;
TF = Zpp * Zp / ( Zp + Zpp ) ;
TFreal = real(TF)
TFreal = 
TFimag = imag(TF)
TFimag = 
simplify(TFreal)
ans = 
simplify(TFimag)
ans = 
  10 个评论
Aditya Zade
Aditya Zade 2022-12-12
One of my transfer function is mentioned below. The problem is matlab is considering it as inf/inf which is giving me NaN in TF. How can I reduce the accuracy of each cofficients such that matlab doesn't consider numerator and denominator as inf.
In other words, how can I make this expression into a TF to generate bode plots.
H_mi_idenvecap = (3198609293274692543065653067624214930931010880602439324145398125122373719207088478979647504147912365379393279754941675512836511355487782993690473574523041631084160518721751172162257705176739868804951103644988270056301183639951764002961292649184871320805158132898539453590562021769463423670681600*s^10 + 528394964584010682783572570459412119664515594164049190345558269437867459470515176667326104615180103456012477355413596835172119921200079260151617877500088502992749340415451742149406277381474643891231659256544455164436234396533126019809440535921033867151082644616021673572586341975274322902549476147200*s^9 + 3364815264139209882761251038034730020362043044801573317888318745671317862412400497423209337541418420521260443952869134388981445799336993041335421299405549089717062472469931053659028441787475552139751801731258711488308627072509140489498330224609031510667147325022465839409185515146370263699813850219632656384*s^8 + 563685908110931596054975975789145169901513780980290358304128472564818439113945323667367115971977027594918152558869188644661828289297726904892093313231476094308350368709481298326017516778957422345680859263591644269304648598798995637702553858174358334141567592255906469564947805207135557231654360809390637347504128*s^7 + 1490257685171315468981773939159767624935105379546903549767553901546757666260988184536138242660525137524427599600907269172197568037353264870592893757184448550843993106896014192025989160859007053395078824566748256700430184559758347451096212214570755769067612673807213370221663874574993990956271545381513459363454956601344*s^6 + 224411121359031406238956529185520395250362431900419601379549724354175300141779807782002787175390937335420258029478904711464033857382032746518758309250170139544602989872581677894407504342046674752426946975585667274279454218538522463096065609371083080593692625877514805336214723108899068335933784036977289350835195383669325824*s^5 + 313435614540771365005472378788015656763925845027971206036651498864090340592352682307018010940557769472344445076584267523825439903337732769841322691195467198038852610063857978387582140881350878878314891681041745284058278276910429225911095101311401498430011153223268796705288141506966312381716632816295470628030364360123375283077120*s^4 + 33052372310506629010656599121147115620859961521559341305146351113127420214834631202990344435993579760702170846892190791973857746526095679537107762472443219962883772363971249591309331211286424393764376285694816602968673940014673553192267278248106274456921340775937053409889209132481984880619358508372583085903071902984276537872895442944*s^3 + 10554849876610050019218981278396688996628674897403163356241700611846899932472970866934831849299194775963827696479104585836123032305509546783003015154442878237125239205963612543055962962608195786274300100491480333594963695160464423230708118733213297370805489181822237410178521006221240286568706063689875376392244199192804233754948767114592256*s^2 + 753392467992893717086282360117150962316839153406675455633706582201238077981189206904259370759701924447550938546700321591834810653022526799241547416036382680758251634390626464710218582595943371303498239715517551074690452253677797215333441705005554261781839683641360100743141925156332627926700008050827621415436588867603559400388725106077190848512*s + 40393566359665865213299995369702801378786875218724874851168023401021269156066673958605743192955287230615526894469312967897474790091218367504457257709499999902912836650529949891815535967261169141147611466577851052777443496008708518428106932969186262475588373778567341855852815573620320080624013993765045842114972784171785710233396747569200139998330880)/(8796093022208*(1736567701589301145136648268745070267169586006463452702588095291310545287345936191207231693796554822487658048259058768341620886269302733511008839672446368759925297181964446329483562182298316297460367920025475136735375318177318220152446938927265225*s^16 + 717181706990849576639378846143604344747449411096706760755432781269930354932423747033964722181786892343713490722151365999943109079738204766382874076277599763531511760836188464560773573023546208271499106196789947712108879925411040105198246484299810406400*s^15 + 8474902337396137452537172814758191980658242868146989657851391747578894251875032832065877742822364594666025855664179609126663161480336968740345550831115764290784755921679756769231426450016836146980279285273763923555792818972379443730261637462558119995610497024*s^14 + 3060326629338539947795355844711670424230830104533914727180539407962588796854615013646350523884347125794176122078030819700072795725888050006338552712785006937280184063404052729170190527501487957786817505885405810768143497607256181752489430834429438245071731940130816*s^13 + 15335444336168058219053185629448334708949063277544031136997077132483020621337637079802757161722640630404872281753614633056555568331414532672223094357966529046772826765042453467781257350997846896530993396891805695459960227266764332535793736164051751621607630139917288341504*s^12 + 4711858733362574057644866067860734266890167073692817480732992906997138035715344442510025574475777812882693974120674123611995382178060815482516053616266140291523815161417712375969402534241363378219168042007415040048566795665071810311976396545823703304132119454866433941966946304*s^11 + 12461014205963250065638676548329519983986852678656821442028223071451986862953854290657145129348903622243955644402794979315564378889686689969794544728780606414037860400637500820387005456202310836355975107206149920656892865375979089113148380105538910212977991189672316595043017557016576*s^10 + 3153610764893990481124174423558310705947546643632994209428020901123162737494351255973870435414198228754915355165434369521635012685859083006757509655278714956660143488334593307926704075313537591188840386118802653628117669854992826061562111167065459384377864567395435560227329653331202146304*s^9 + 4196412284794922572702360089303675577340283804488759850189612200368294017368398595914096366806020918778693395129234114128153062192604212478313975760328409295684988085937308175782203157955672589220365686768906199996621051328446913656225084261462685321058494326091046314623083166983844470867361792*s^8 + 839696424033259323305277259210900820320478003816838709480281015945809199296634999150590387829225143482425327884290937963213529918958215499963010050257883261661116698672089983062272555691561771948624741135615136402177972155830430074599923524875698012649853320313826785826359259368579738843006040539136*s^7 + 341072015811716244581240425181942419448756068895024422843527961260011128604733215760197603405155010453702864279995268573154131226786824324708691134950163294295325223338672708909939254713696078247686589394867848835471068071716381633979836751951857567203826189555176612717339907046903740670679827717512232960*s^6 + 51476173533824520781908853124919012872558430328391461780218775183986801463554817939279579606358525500680300575053075911956606069305313326101015765941389705874779285216218534083105540702681692717458081833490789076288368074605827448462551175726017448688748586848426830311404300308080734687142200861235996885254144*s^5 + 9228963476387818526423807612115148970316248169275808385076365503267308598269819401998734036439982463217524876484624976388723299159343094174914050928582387570266303834881596621229787172099209884856109159135095077583516660315341853942084463079767357281710097403352648761070698296853785890788932711840594861082305101824*s^4 + 911043127300211915454447709952136661126629354017481583423569852460766841727455715209418097330189535279221498687673228467765980464696556517614401815146230080830691482821416104568196921957378920491489758562441974400120279545914620076777651283757517630045507906342397020857506949542233013765663031850658377453871364193648640*s^3 + 75868678050389397096199117807278223110751098365028855498075829798267143867014386665936900343279698677835660735344427396694303631098532043960596038629673009001621357014913910492452492780815641595686087435829590661675243076354379570729851910901126879665446131462508434640539917488307446180193941439583412905434367223985904549888*s^2 + 3174513831849780742601338555460290943793994469034596358746253922613510616605561379821305476696010693727089813475729119325248586731428000109372903713452154026995530738937814787974412887244775242394586804120936971001141865477711946150235680311292016446655479884972049090441497967508802274262026411582423828562014806418492161112670208*s + 85101763546936457815360949157574484179847571907787276421705398659175650996907399114220574701462894693638387449557772198429740759814194738572525547329802602231403046298633131911713278866661938182354784531853129097941253657184023638815783627856915654844607628228041193047656641242417683444772761706726371526915906514106247461005512671232))

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by