How to calculate double integral?

3 次查看(过去 30 天)
Hi! I have a problem with solution of double integral. The syms solves too long and it cannot be used.But in another way I have problem.
I have an integral fun2 on z and it has x which is a variable in the integral fun0. How can I set a variable x to first calculate the integral f2 over z, and then integral f3 over x? (Of course, when I set x=some number I obtain a curve or a set of curves if x=0:0.1:1 and make for j = 1:length(x), but I doubt about this result, because the behavior of curves is not correct).
clear all, close all
n=1;
t=1;
r=1;
s=0:0.2:10;
for i = 1:length(s)
k=s(i);
fun2=@(z)(z.*exp(2.*n.*t.*z.^2).*(besselj(0,(k.*z.*x)))./sqrt(1-z.^2));
f2(i,:)=integral(fun2,0,1);
fun0=@(x)(((((x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/(r.^2)).^2)))).*f2(i));
f3(i,:)=integral(fun0,0,inf);
end
Cor=8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi)))).*f3;
plot(s,Cor,'b-');

采纳的回答

Torsten
Torsten 2022-12-16
编辑:Torsten 2022-12-16
n = 1 ;
t = 1;
r = 1;
s = 0:0.2:10;
fun = @(x,z,k) x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/r^2).^2 .* z.*exp(2*n*t.*z.^2).*besselj(0,k.*z.*x)./sqrt(1-z.^2);
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s)
f3 = 1×51
0.2959 0.2948 0.2915 0.2860 0.2784 0.2690 0.2579 0.2454 0.2316 0.2169 0.2015 0.1857 0.1697 0.1538 0.1381 0.1229 0.1083 0.0945 0.0815 0.0694 0.0583 0.0483 0.0392 0.0311 0.0240 0.0177 0.0123 0.0077 0.0038 0.0005
Cor = 8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi))))*f3
Cor = 1×51
1.0000 0.9962 0.9849 0.9663 0.9409 0.9091 0.8716 0.8292 0.7828 0.7331 0.6811 0.6276 0.5735 0.5196 0.4667 0.4153 0.3659 0.3192 0.2753 0.2346 0.1972 0.1631 0.1324 0.1051 0.0809 0.0598 0.0416 0.0259 0.0127 0.0017
plot(s,Cor,'b-')
grid on
  1 个评论
Hexe
Hexe 2022-12-16
Dear Torsten, thank you very much :) It solves my problem and now I will know what to do with integrals like these.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Thermodynamics & Statistical Physics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by