** how I'm doing:
syms s;
kp = sym('kp','real');
ki = sym('ki','real');
kd = sym('kd','real');
w = sym('w','real');
eqn1 = (subs(V_jw_even,w,0))*i0 > 0
eqn2 = (subs(V_jw_even,w,w_root))*i1 > 0
eqn3 = (subs(V_jw_even,w,inf))*i2 > 0
eqns = [eqn1 eqn2 eqn3]
[KI KD] = feval(symengine,'numeric::solve',eqns,[ki kd],'AllRealRoots')
KI
KD
** Output I'm getting:
0 < -9*ki
0 < 18*ki - 162*kd - 36
0 < (ki - 9*kd + 5)*sym(inf) + (- kd - 1)*sym(inf)
[0 < -9*ki, 0 < 18*ki - 162*kd - 36, 0 < (ki - 9*kd + 5)*sym(inf) + (- kd - 1)*sym(inf)]solve([vpa("0.0") < -vpa("9.0")*ki, vpa("0.0") < vpa("18.0")*ki - vpa("162.0")*kd - vpa("36.0"), vpa("0.0") < vpa("RD_INF")*ki - vpa("RD_INF")*kd + sym(NaN)], [ki, kd], AllRealRoots)
solve([vpa("0.0") < -vpa("9.0")*ki, vpa("0.0") < vpa("18.0")*ki - vpa("162.0")*kd - vpa("36.0"), vpa("0.0") < vpa("RD_INF")*ki - vpa("RD_INF")*kd + sym(NaN)], [ki, kd], AllRealRoots)
KD = 0