Solution of the equation

3 次查看(过去 30 天)
Dmitry
Dmitry 2023-1-17
评论: Dmitry 2023-1-26
We have such a function:
We set the array d = [10:10:10000], d(i) is substituted in and equated to the constant C_2, i.e. we get the equation F(d(i), t)=C_2 (C_2 = 6.81), and we need to find this 't' for the corresponding d(i), that is, as a result, we should have a graph d(t). I think that most likely it will be a discontinuous fast-oscillating function.
My code:
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 6.81;
%% calculation
F = f_calc(t,nD);
plot(t,F)
grid on
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = zeros(1,numel(t));
for i = 1:numel(t)
for k = 0:nD(i)
F(i) = F(i) + 1/(2*k+1).*(k0.*real(((f_p1(k,t(i))-f_p2(k,t(i)))./2))+(f_arg_2(k,t(i))-f_arg_1(k,t(i)))./d);
end
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
  6 个评论
Walter Roberson
Walter Roberson 2023-1-18
What problem? You showed an equation, you showed code. Are you getting an error message? If not then at what point in the code do you start seeing unexpected results? As outsiders how would we know if the code was producing correct answers or not?
Dmitry
Dmitry 2023-1-18
Walter Roberson, I don't understand how to take into account in this problem that the upper limit of the sum depends on t

请先登录,再进行评论。

回答(1 个)

Torsten
Torsten 2023-1-18
编辑:Torsten 2023-1-18
This code doesn't work since there does not seem to be a solution for some or all of the d values you supplied.
I suggest you fix a value for d first and plot f_calc(t) for a number of t values to see if the curve passes the t-axis somewhere.
%% initial conditions
global d k0 h_bar ksi m E C_2
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
dd = [10:10:10000];
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 6.81;
t0 = 1.0;
for i = 1:numel(dd)
d = dd(i);
t(i) = fsolve(@f_calc,t0);
t0 = t(i);
end
plot(t,F)
function F = f_calc(t)
global d k0 h_bar ksi m C_2
nD = floor(375/(2*pi*t*1.2) - 0.5);
F = 0;
for k = 0:nD
F = F + 1/(2*k+1).*(k0.*real(((f_p1(k,t)-f_p2(k,t))./2))+(f_arg_2(k,t)-f_arg_1(k,t))./d);
end
F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
  7 个评论
Torsten
Torsten 2023-1-22
编辑:Torsten 2023-1-22
I've got a graph that never crosses F - C_2 = 0 (which would mean that there exists a t value or which F(t,d(i)) - C_2 = 0).
Simply spoken: The graphs must somewhere cross y=0 for that your problem has a solution.
It's the same as if you graph f(x) = x^2 - 2 to see where the zeros of x^2 - 2 = 0 are located.
Dmitry
Dmitry 2023-1-26
Thank you so much!

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Get Started with MATLAB 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by