Global error and local error of euler method
27 次查看(过去 30 天)
显示 更早的评论
The local error is proportional to h^2. I did not understand the relationship between the h and the error. Is it as h increase the error increase? Also the global error is proportional to h , how is that?
1 个评论
Torsten
2023-1-29
These questions are answered in every standard book about the numerical treatment of ordinary differential equations.
回答(1 个)
Sulaymon Eshkabilov
2023-1-28
Yes, error increase if h step size increases. See this simple example:
dy = y(t) with y(0) = 3;
y(n+1) =y(n)+h*f(t(n), y(n));
from the givend ICs: f(t(0), y(0)) = 3, and therefore, y(1+1) = y(1)+h*3; Let's see in simulation:
h=0.1; % Case 1
f=@(t,y)y; % from the given exercise dy = y(t) and thus f(t,y) = dy;
t=0:h:5;
y(1)=3; % Initial Condition
for ii=2:numel(t) % calculations
y(ii) = y(ii-1)+h*f(t(ii-1),y(ii-1));
end
t=t.';
Solution = array2table(t);
Solution.Y = y.';
plot(t, y, 'r-', 'DisplayName', 'Case 1: h=0.1'), hold on
% Analytical solution:
syms t y(t)
Sol=dsolve(diff(y(t), t)==y, y(0)==3);
Sol_yt = vectorize(Sol)
t=(0:h:5).';
Sol = (eval(Sol_yt));
Error = abs(Sol)-Solution.Y; % Error = Analytical solution - Numerical Solution
Solution.Error=Error
Case1 = [t, Error];
clearvars y
h = 0.5; % Case 2
f=@(t,y)y; % from the given exercise dy = y(t) and thus f(t,y) = dy;
t=0:h:5;
y(1)=3; % Initial Condition
for ii=2:numel(t) % calculations
y(ii) = y(ii-1)+h*f(t(ii-1),y(ii-1));
end
plot(t, y, 'b-', 'DisplayName', 'Case 2: h=0.5'), grid on
t=t.';
Solution = array2table(t);
Solution.Y = y.';
t=(0:h:5).';
Sol = (eval(Sol_yt));
Error = abs(Sol)-Solution.Y; % Error = Analytical solution - Numerical Solution
Solution.Error=Error
Case2 = [t, Error];
clearvars y Solution
h = 1; % Case 3
f=@(t,y)y; % from the given exercise dy = y(t) and thus f(t,y) = dy;
t=0:h:5;
y(1)=3; % Initial Condition
for ii=2:numel(t) % calculations
y(ii) = y(ii-1)+h*f(t(ii-1),y(ii-1));
end
plot(t, y, 'k-', 'DisplayName', 'Case 3: h=1')
legend('show', 'location', 'NW')
xlabel('time')
ylabel('Solution, y(t)')
t=t.';
Solution = array2table(t);
Solution.Y = y.';
t=(0:h:5).';
Sol = (eval(Sol_yt));
Error = abs(Sol)-Solution.Y; % Error = Analytical solution - Numerical Solution
Solution.Error=Error
Case3 = [t, Error];
figure
plot(Case1(:,1), Case1(:,2), 'r'), hold on
plot(Case2(:,1), Case2(:,2), 'b')
plot(Case3(:,1), Case3(:,2), 'k'), grid on
legend('Case1: h=0.1', 'Case2: h=0.5', 'Case3: h=1', 'location', 'NW')
xlabel('time')
ylabel('Error')
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!