internalHeatSource in 2D, 3D, and axisymmetric PDE

6 次查看(过去 30 天)
Hi, I am implementing internalHeatSource objects within a heat transfer PDE. I'm looking for clarity about the units for 2D, 3D, and 2D axisymmetric simulations.
In 3D simulations, I know internalHeatSource takes units of W/m3. I'm wondering if it's the same for 2D and 2D axisymmetric simulations.
If we use internalHeatSource in a 2D simulation, does it just assume unit depth (1m)? And do axisymmetric simulations correctly process the internalHeatSource input based on the perpendicular cross-section?
I figured this was the case, but I could not find explicit documentation in the user's guide. I also got strange results when I transformed my 3D cylindrical study into a 2D axisymmetric study using the same values in internalHeatSource.
Thanks!

回答(1 个)

Supraja
Supraja 2023-6-2
I understand that you want to differentiate between the inputs of the internalHeatSource Assignment Properties of 2D and 3D simulations.
You can use the internalHeatSource function using the syntax: internalHeatSource(thermalmodel,heatSourceValue,RegionType,RegionID).
The units for 2D and 2D axisymmetric simulations are same.
You can find the region IDs by using pdegplot.
Here is the link for documentation of internalHeatSource properties:https://www.mathworks.com/help/pde/ug/pde.thermalmodel.internalheatsource.html?s_tid=doc_ta

类别

Help CenterFile Exchange 中查找有关 Geometry and Mesh 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by