How to plot This graph in matlab?
1 次查看(过去 30 天)
显示 更早的评论
x=[1.0:0.1:3.0];
%Composition
%Outlet Specification [PFAD(4)]
y=-2.03^9-3*x^2)+5.76^(-3x)+1;
z=-1.11^-2*x^2+6.49^-2*x+9.99;
plot(x,y,'-b',x,z,'-r')
title('Distillate composition vs time');
xlabel('time');
ylabel('xd');
legend('a) FFA','b)TAG');
0 个评论
采纳的回答
DGM
2023-2-1
编辑:DGM
2023-2-1
1.00E-2 is shorthand for scientific notation 1.00*10^-2.
% define x
x = 1.0:0.05:3.0;
% YData as row vectors in a matrix
y = zeros(3,numel(x)); % preallocate
y(1,:) = -2.03E-3*x.^2 + 5.76E-3*x + 1E2;
y(2,:) = -1.11E-2*x.^2 + 6.49E-2*x + 9.99E1;
y(3,:) = -2.73E-2*x.^3 + 1.05E-1*x.^2 - 1.42E-1*x + 1E2;
% plot all y vs x
hp = plot(x,y);
% set colors using short names or direct tuples
% set line and marker styles as needed
linecolors = {'k',[0.8 0.5 0],[0.8 0.8 0]};
for k = 1:3
hp(k).Color = linecolors{k};
hp(k).Marker = 'o';
hp(k).MarkerFaceColor = linecolors{k};
hp(k).MarkerSize = 3;
end
title('Distillate composition vs time');
xlabel('time');
ylabel('xd');
legend(hp,{'a) FFA','b) TAG','c) something'});
Why aren't the curves in the same location? The equations in the annotations contain constants which are rounded. It's also likely that the curves are measured data and the equations are a polynomial fit, so they might not actually be identical.
4 个评论
DGM
2023-2-1
编辑:DGM
2023-2-1
To try to better approximate what the graph shows while staying within the rounded constants given:
% define x
x = 1.0:0.05:3.0;
% YData as row vectors in a matrix
y = zeros(3,numel(x)); % preallocate
% using polyval() is the same as writing a polynomial with the specified coefficients
p1 = [-2.025E-3 5.755E-3 99.996];
p2 = [-1.115E-2 6.495E-2 99.883];
p3 = [-2.728E-2 1.051E-1 -1.423E-1 100.066];
y(1,:) = polyval(p1,x);
y(2,:) = polyval(p2,x);
y(3,:) = polyval(p3,x);
% plot all y vs x
hp = plot(x,y);
% set colors using short names or direct tuples
% set linestyles as needed
linecolors = {'k',[0.8 0.5 0],[0.8 0.8 0]};
for k = 1:3
hp(k).Color = linecolors{k};
hp(k).Marker = 'o';
hp(k).MarkerFaceColor = linecolors{k};
hp(k).MarkerSize = 3;
end
title('Distillate composition vs time');
xlabel('time');
ylabel('xd');
legend(hp,{'a) FFA','b) TAG','c) something'});
Otherwise, you'll have to find a better source of information than a picture.
DGM
2023-2-1
... or if we assume the plotted data are measured values and not the polynomial fit, we could approximate the measured values instead of trying to refine the fit.
% define x
x = 1.0:0.05:3.0;
% YData as row vectors in a matrix
S = load('y.mat');
% plot all y vs x
hp = plot(x,S.y);
% set colors using short names or direct tuples
% set line and marker styles as needed
linecolors = {'k',[0.8 0.5 0],[0.8 0.8 0]};
for k = 1:3
hp(k).Color = linecolors{k};
hp(k).Marker = 'o';
hp(k).MarkerFaceColor = linecolors{k};
hp(k).MarkerSize = 3;
end
title('Distillate composition vs time');
xlabel('time');
ylabel('xd');
legend(hp,{'a) FFA','b) TAG','c) something'});
Note that this is a better approximation of what the image itself shows.
更多回答(1 个)
KSSV
2023-2-1
I have shown one plot for you reference. You may extend the same to others.
x=1.0:0.1:3.0;
y=-2.03*10^-3*x.^2+5.76*10^-3*x+1*10^2 ;
plot(x,y,'-b')
title('Distillate composition vs time');
xlabel('time');
ylabel('xd');
legend('a) FFA');
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Polynomials 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!