How to find the orientation of the line of the intersection between two planes?

2 次查看(过去 30 天)
Is there any method/indiacator that i can use to know the orientation of the the intersection line between two planes( using Dual Plucker Matrix )?
I used the follwoing code get the line:
P1 =[177668442.453315 ,-102576923.076923, 0];
P2 =[ -102576923.076923 ,177668442.453315 ,-102576923.076923];
P3= [0, -102576923.076923, 88834221.2266576];
P11= [152763459.308716 , -102576923.076923, 0];
P22=[ -102576923.076923, 183536536.231793 , -102576923.076923];
P33= [0, -102576923.076923, 91768268.1158967];
A=null([[P1;P2;P3],ones(3,1)]); %plane 1
B=null([[P11;P22;P33],ones(3,1)]); %plane 2
L=A*B.' - B*A.' %line of intersection
L = 4×4
0 -0.0351 -0.0484 0.0000 0.0351 0 -0.0138 0.0000 0.0484 0.0138 0 0.0000 -0.0000 -0.0000 -0.0000 0

采纳的回答

Matt J
Matt J 2023-2-5
编辑:Matt J 2023-2-5
P1 =[177668442.453315 ,-102576923.076923, 0];
P2 =[ -102576923.076923 ,177668442.453315 ,-102576923.076923];
P3= [0, -102576923.076923, 88834221.2266576];
P11= [152763459.308716 , -102576923.076923, 0];
P22=[ -102576923.076923, 183536536.231793 , -102576923.076923];
P33= [0, -102576923.076923, 91768268.1158967];
A=null([[P1;P2;P3],ones(3,1)]); %plane 1
B=null([[P11;P22;P33],ones(3,1)]); %plane 2
L=A*B.' - B*A.' %line of intersection;
L = 4×4
0 -0.0351 -0.0484 0.0000 0.0351 0 -0.0138 0.0000 0.0484 0.0138 0 0.0000 -0.0000 -0.0000 -0.0000 0
N=null(L);
a=N(:,1)+N(:,2);
b=N(:,1)+2*N(:,2);
direction=normalize( b(1:3)/b(4)-a(1:3)/a(4) ,'n')
direction = 3×1
0.2242 -0.7894 0.5715
or,
direction=normalize( cross(A(1:3),B(1:3)) ,'n')
direction = 3×1
-0.2242 0.7894 -0.5715
  6 个评论
M
M 2023-2-5
编辑:M 2023-2-5
@Matt J I have a question please if we have more than 3 dimensions, 4d 5d..
Would this method works?
because I tried 4d problem and 'N' size is 5*3
a=N(:,1)+N(:,2);
b=N(:,1)+2*N(:,2);
direction=normalize( b(1:3)/b(4)-a(1:3)/a(4) ,'n')
Also I want to ask why did you multiply by 2 here "b=N(:,1)+2*N(:,2);" ?
and what does a and b denote?

请先登录,再进行评论。

更多回答(1 个)

Torsten
Torsten 2023-2-5
编辑:Torsten 2023-2-5
If you look at the next lines in Matt's code, he creates 100 points on the line.
Thus in the modified code below, Pstart could be taken as a point on the line and d as a direction vector for the line emanating from Pstart.
Did you mean something like this ?
P1 =[177668442.453315 ,-102576923.076923, 0];
P2 =[ -102576923.076923 ,177668442.453315 ,-102576923.076923];
P3= [0, -102576923.076923, 88834221.2266576];
P11= [152763459.308716 , -102576923.076923, 0];
P22=[ -102576923.076923, 183536536.231793 , -102576923.076923];
P33= [0, -102576923.076923, 91768268.1158967];
A=null([[P1;P2;P3],ones(3,1)]); %plane 1
B=null([[P11;P22;P33],ones(3,1)]); %plane 2
L=A*B.' - B*A.'; %line of intersection
N=null(L);
t=linspace(-.1,.1);
xyz=N(:,1) + N(:,2)*t;
xyz = xyz(1:3,:)./xyz(4,:);
P1 = xyz(:,1);
P2 = xyz(:,2);
Pstart = P1
Pstart = 3×1
2.2415 -7.8929 5.7147
d = (P2-P1)/norm(P2-P1)
d = 3×1
0.2242 -0.7894 0.5715
  13 个评论
M
M 2023-2-5
@Torsten could you please suggest the methods that we can get the intersected plane (2d object in 4d) ?
Torsten
Torsten 2023-2-6
编辑:Torsten 2023-2-6
The usual representation of the plane of intersection is given by all solutions x of a linear system of the form
A*x = b
Here, A is a 2x4 matrix and b is a 2x1 vector.
The rows of A are the normal vectors of 2 hyperplanes in the 4d space.
The vector b somehow represents the distance of these hyperplances to the origin.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Interpolating Gridded Data 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by