can i use a custom activation function in this neural network and in what way?

9 次查看(过去 30 天)
x = linspace(0,1,10000)';
inputSize = 1;
layers = [
featureInputLayer(inputSize,Normalization="none")
fullyConnectedLayer(10)
sigmoidLayer
fullyConnectedLayer(1)
sigmoidLayer];
dlnet = dlnetwork(layers);
numEpochs = 15;
miniBatchSize =100 ;
initialLearnRate = 0.5;
learnRateDropFactor = 0.5;
learnRateDropPeriod = 5;
momentum = 0.9;
icCoeff = 7;
ads = arrayDatastore(x,IterationDimension=1);
mbq = minibatchqueue(ads,MiniBatchSize=miniBatchSize,MiniBatchFormat="BC");
figure
set(gca,YScale="log")
lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss (log scale)")
grid on
velocity = [];
iteration = 0;
learnRate = initialLearnRate;
start = tic;
% Loop over epochs.
for epoch = 1:numEpochs
% Shuffle data.
mbq.shuffle
% Loop over mini-batches.
while hasdata(mbq)
iteration = iteration + 1;
% Read mini-batch of data.
dlX = next(mbq);
% Evaluate the model gradients and loss using dlfeval and the modelGradients function.
[gradients,loss] = dlfeval(@modelGradients, dlnet, dlX, icCoeff);
% Update network parameters using the SGDM optimizer.
[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);
% To plot, convert the loss to double.
loss = double(gather(extractdata(loss)));
% Display the training progress.
D = duration(0,0,toc(start),Format="mm:ss.SS");
addpoints(lineLossTrain,iteration,loss)
title("Epoch: " + epoch + " of " + numEpochs + ", Elapsed: " + string(D))
drawnow
end
% Reduce the learning rate.
if mod(epoch,learnRateDropPeriod)==0
learnRate = learnRate*learnRateDropFactor;
end
end

采纳的回答

Christopher Erickson
There are two solutions I would suggest first:
If you have an elementwise activation function with no learnables (such as "exp" or "sin") you could use "functionLayer". For more generic workflows you could use a custom layer. I would only suggest using a custom layer if your activation function did not operate elementwise or if it has learnables; such as "prelu" in the examples.
Good luck!

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Custom Training Loops 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by