REQUIRE CODE FOR AKAIKE INFORMATION CRITERIA (AIC) VALUE FOR ESTIMATED MODEL
14 次查看(过去 30 天)
显示 更早的评论
采纳的回答
Atharva
2023-3-29
The Akaike Information Criterion (AIC) value can be calculated using the log-likelihood function and the number of parameters in the model. Here is an example-
% assume that we have a vector of observed data 'y', and a vector of predicted data 'y_pred'
% calculate the log-likelihood function for the model
n = length(y);
sigma2 = var(y-y_pred);
logLikelihood = -0.5*n*log(2*pi) - 0.5*n*log(sigma2) - (1/(2*sigma2))*sum((y-y_pred).^2);
% calculate the number of parameters in the model
numParams = ; % insert the number of parameters in your model here
% calculate the AIC value
AIC = -2*logLikelihood + 2*numParams;
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Multivariate Models 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!