How to calculate 95% confidence interval using regression analysis?
22 次查看(过去 30 天)
显示 更早的评论
I have a timeseries dataset of measured lengths of some lines. The dataset consists of dates from oct of one year to march of next year. How do I calculate the 95% confidence interval values using regression analysis for each season (e.g. oct 2003 to March 2004 and so on). Something like this as shown below (CI = 95% confidence interval).
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1306030/image.png)
2 个评论
dpb
2023-2-24
Which toolboxes do you have available? regress in the Statistics TB returns the coefficients and the 95% CI (upper and lower) for each. The table above would use (one presumes) half the difference if the values presented are to be interpreted as "Rate +/- CI".
Alternatively, fit in the Curve Fitting TB has the same statistics and doesn't need the manual insertion of the column of ones to estimate the intercept term if needed.
The easiest way to do this will be to put your data into a timetable and create a grouping variable for the seasons by year; your selection from Oct to March (Is this inclusive or exclusive of March?) isn't a built in grouping so you'll have to create it.
采纳的回答
Sulaymon Eshkabilov
2023-2-24
If there is a linear fit model for x vs. y(x), then fitlm() can be used, e.g.:
x = (0:.1:13)';
Noise = 35*randn(size(x));
y = @(x)3*x.^2-5*x+3;
Y =y(x)+Noise;
YT=table(x);
YT.Y=Y;
FM =fitlm(YT, 'Y~x^2+x+1')
plot(FM)
4 个评论
Sulaymon Eshkabilov
2023-12-4
Ask your question in a separate thread (a separate post) so others can also see it.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!