How to MATLAB function using parallel Pooling
1 次查看(过去 30 天)
显示 更早的评论
I have a MATLAB function and a dataset that I would like to run in parallel on the CPU. Specifically, I would like to compare the performance of running the function with and without parallelization
I also attached my Dataset below
Please help me with this, I know parfor is used but i am unable to used that
load('Dataset.mat')
clusternumber = 6;
function [Score] = Scorefunction(Dataset,clusternumber)
dataset_len = size(Dataset,1);
Score = zeros(1,clusternumber);
for j=1:clusternumber
[cluster_assignments,centroids] = kmeans(Dataset,j);
distance_within=zeros(dataset_len,1);
distance_between=Inf(dataset_len,j);
for i=1:dataset_len
for jj=1:j
boo=cluster_assignments==cluster_assignments(i);
Xsamecluster=Dataset(boo,:);
if size(Xsamecluster,1)>1
distance_within(i)=sum(sum((Dataset(i,:)-Xsamecluster).^2,2))/(size(Xsamecluster,1)-1);
end
boo1= cluster_assignments~=cluster_assignments(i);
Xdifferentcluster=Dataset(boo1 & cluster_assignments ==jj,:);
if ~isempty(Xdifferentcluster)
distance_between(i,jj)=mean(sum((Dataset(i,:)-Xdifferentcluster).^2,2));
end
end
end
minavgDBetween = min(distance_between, [], 2);
silh = (minavgDBetween - distance_within) ./ max(distance_within,minavgDBetween);
Score(j) =mean(silh);
end
end
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Matrix Indexing 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!