Foucault Pendulum

11 次查看(过去 30 天)
Eric
Eric 2011-10-25
编辑: arnold ing 2018-1-21
I am inexperienced with matlab and have not used the ODE command before. I am trying write a code for the Foucault pendulum. I know there are example on the interent but they are not too helpful.
Here are my two differential equations and initial conditions
ddot(x) + (Omega^2)*x - 2*P*dot(y) = 0
ddot(y) - (Omega^2)*x - 2*P*dot(y) = 0
g = 9.81; % acceleration of gravity (m/sec^2)
l = 60; % pendulum length (m)
b = .2;
initial_x = .2; % initial x coordinate (m)
initial_y = b/2; % initial y coordinate (m)
initial_xdot = 0; % initial x velocity (m/sec)
initial_ydot = 0; % initial y velocity (m/sec)
Omega=2*pi/86400; % Earth's angular velocity of rotation about its axis (rad/sec)
lambda=0/180*pi; % (0, 30, 60, 90)latitude in (rad)
P=Omega*sin(lambda)
C=(g/l)^2;

采纳的回答

Grzegorz Knor
Grzegorz Knor 2011-10-25
First of all you have to reduce the order of an ODEs:
Next write fuction that describes the problem:
function dy = focaultPendulum(t,y)
% define your constants
dy = zeros(4,1);
dy(1) = y(2);
dy(2) = ... % your equation
dy(3) = y(4);
dy(4) = ... % your equation
And solve and plot:
[T,Y] = ode45(@focaultPendulum,tspan,initial_values);
plot(T,Y(:,1),T,Y(:,3))
  1 个评论
Eric
Eric 2011-10-25
I am having an isssue reducing my 2nd order diff equs. Is there anything that stands out? Thank you for your help.
x_ddot = -C*x + 2*P*y'; %Equation of motion 1
y_ddot = -C*y - 2*P*x'; %Equation of motion 2
x_dot = z; % Equ 3; equals the first derivative of the free variable in Equ 1
z_dot = x_ddot; %Equ 4; taking the derivate of each side
y_dot = zz; % Equ 5; equals the first derivative of the free variable in Equ 2
zz_dot = y_ddot; % Equ 6; taking the derivate of each side
z_dot = -C*x + 2*P*zz; %Equ 7
zz_dot = -C*y - 2*P*z; %Equ 8
y(2)= x_dot;
y(4)= y_dot;
dy = zeros(4,1);
dy(1) = y(2);
dy(2) = z_dot;
dy(3) = y(4);
dy(4) = zz_dot;

请先登录,再进行评论。

更多回答(2 个)

Grzegorz Knor
Grzegorz Knor 2011-10-26
You have to rewrite your equations:
x'' + C*x - 2*P*y' = 0
y'' + C*y + 2*P*x' = 0
to form:
u = y' --> u' = y''
v = x' --> v' = x''
v' + C*x - 2Pu = 0
u' + C*y + 2Pv = 0
assume:
x(1) = x
x(2) = y
x(3) = u
x(4) = v
then:
function xprime = odetest(t,x)
% define P & C
xprime(1) = x(4);
xprime(2) = x(3);
xprime(3) = -2*P*x(4) - C^2*x(2);
xprime(4) = 2*P*x(3) - C^2*x(1);
xprime = xprime(:);
  2 个评论
Eric
Eric 2011-10-29
I almost have the problem solved but my seoncd to last line keeps giving me an error saying "Maximum recursion limit of 500 reached. Use set(0,'RecursionLimit',N)to change the limit.
function dy = focaultPendulum(t,y)
% define your constants
g = 9.81; % acceleration of gravity (m/sec^2)
l = 60; % pendulum length (m)
b = .2; x = b; % initial x coordinate (m)
y = b/2; % initial y coordinate (m)
xdot = 0; % initial x velocity (m/sec)
ydot = 0; % initial y velocity (m/sec)
Omega = 2*pi/86400; % Earth's angular velocity of rotation about its axis (rad/sec)
lambda = 30/180*pi; % latitude in (rad) P = Omega*sin(lambda); C=(g/l)^2;
xddot = -C*x + 2*P*ydot; %Equation of motion 1
yddot = -C*y - 2*P*xdot; %Equation of motion 2
u = xdot;
udot = xddot;
v = ydot;
vdot = yddot;
udot = -C*x + 2*P*v;
vdot = -C*y - 2*P*u;
t0 = 0; %time initial tf = 8640;
%time final i.e. seconds in a day xy0 = [b b/2 0 0];
%initial conditions dy(1) = xdot;
dy(2) = udot;
dy(3) = ydot;
dy(4) = vdot;
dy(:);
[t,dy] = ode45(@focaultPendulum,[t0,tf], xy0); % plot(t,dy(:,1),t,dy(:,3))
bym
bym 2011-10-29
change to dy = dy(:); or comment it out

请先登录,再进行评论。


arnold ing
arnold ing 2018-1-21
编辑:arnold ing 2018-1-21
Can anyone help me with euler forward to solve foucault pendulum ODEs. i got an error calling the function E=euler_2(@edf1,@edff2,0,30,5/10,0,100)
function dy=edf2(z)
dy = zeros(4,1);
dy(2) = z(4);
dy(4) = -1.4580e-04*sin(pi/4)*z(2) - 0.9085*z(3);
end
function dy=edf1(z)
dy = zeros(4,1);
dy(1) = z(3);
dy(3) = 1.4580e-04*sin(pi/4)*z(4) - 0.9085*z(1);
end
function E=euler_2(f1,f2,x0,b,y01,y02,N)
% euler frw
% in [x0,b]
% step size h=(b-x0)/N
h=(b-x0)/N;
X=zeros(1,N+1);
Y1=zeros(1,N+1);
Y2=zeros(1,N+1);
X=(x0:h:b); % Rrjeti i pikave xi+1-xi=h
Y1(1)=y01; % Kushti fillestar y1(x0)=y01
Y2(1)=y02; % Kushti fillestar y2(x0)=y02
for i=1:N
Y1(i+1)=Y1(i)+h*feval(f1,X(i),Y1(i),Y2(i));
Y2(i+1)=Y2(i)+h*feval(f2,X(i),Y1(i),Y2(i));
end
E=[X' Y1' Y2'];
plot(X,Y1,'*',X,Y2,'o')
end

类别

Help CenterFile Exchange 中查找有关 Equation Solving 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by