how to use ode45 to solve motion equation with Matrix

2 次查看(过去 30 天)
Hi every one
I want to use ode45 for solving motion equatiom
the equation is a second_oder_ode
% M * (Z)'' + R*( Z)' + K *(Z) = 0
the unknow is Z
My code is
dt=0.1;
t_ode=0:dt:10;
Z0 =[ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0];
M =[ 0.0210 0.0014 -0.0209 0 0 0 0 0
0.0014 8.1991 -0.0000 -3.9745 -0.0014 0 0 0
-0.0209 -0.0000 0.0420 0.0014 -0.0209 0 0 0
0 -3.9745 0.0014 8.1991 -0.0000 -3.9745 -0.0014 0
0 -0.0014 -0.0209 -0.0000 0.0420 0.0014 -0.0209 0
0 0 0 -3.9745 0.0014 8.1991 -0.0000 -0.0014
0 0 0 -0.0014 -0.0209 -0.0000 0.0420 -0.0209
0 0 0 0 0 -0.0014 -0.0209 0.0210];
K =[ 0.1808 -0.9600 0.0592 0 0 0 0 0
-0.9600 23.3600 0.0000 -11.6800 0.9600 0 0 0
0.0592 0 0.3617 -0.9600 0.0592 0 0 0
0 -11.6800 -0.9600 23.3600 0.0000 -11.6800 0.9600 0
0 0.9600 0.0592 0 0.3617 -0.9600 0.0592 0
0 0 0 -11.6800 -0.9600 23.3600 0.0000 0.9600
0 0 0 0.9600 0.0592 0 0.3617 0.0592
0 0 0 0 0 0.9600 0.0592 0.1808];
R =[ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ] ;
odefun = @(t,Z) [Z(2);
-(R*Z(2)+K*Z(1))/M]
[T,Z] = ode45(odefun,t_ode,Z0')
  1 个评论
alize beemiel
alize beemiel 2023-4-1
someone give me this solution
but i dont understaiding
function ode_test
clear all
clc
dt=0.1;
t_ode=0:dt:10;
Z0 =[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
M =[ 0.0210 0.0014 -0.0209 0 0 0 0 0
0.0014 8.1991 -0.0000 -3.9745 -0.0014 0 0 0
-0.0209 -0.0000 0.0420 0.0014 -0.0209 0 0 0
0 -3.9745 0.0014 8.1991 -0.0000 -3.9745 -0.0014 0
0 -0.0014 -0.0209 -0.0000 0.0420 0.0014 -0.0209 0
0 0 0 -3.9745 0.0014 8.1991 -0.0000 -0.0014
0 0 0 -0.0014 -0.0209 -0.0000 0.0420 -0.0209
0 0 0 0 0 -0.0014 -0.0209 0.0210]
K =[ 0.1808 -0.9600 0.0592 0 0 0 0 0
-0.9600 23.3600 0.0000 -11.6800 0.9600 0 0 0
0.0592 0 0.3617 -0.9600 0.0592 0 0 0
0 -11.6800 -0.9600 23.3600 0.0000 -11.6800 0.9600 0
0 0.9600 0.0592 0 0.3617 -0.9600 0.0592 0
0 0 0 -11.6800 -0.9600 23.3600 0.0000 0.9600
0 0 0 0.9600 0.0592 0 0.3617 0.0592
0 0 0 0 0 0.9600 0.0592 0.1808]
R =[ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]
[T,Z]=ode45( @(t,Z) ode_1Dr(Z,M,R,K) ,t_ode,Z0' )
end
function [dZl] = ode_1Dr (Z,M,R,K)
B=[M zeros(length(M))
zeros(length(M)) M];
C=[R K
-M zeros(length(M))];
dZl=B\(-C*Z);
end

请先登录,再进行评论。

采纳的回答

Alan Stevens
Alan Stevens 2023-4-1
Does this help?
%% Data
M =[ 0.0210 0.0014 -0.0209 0 0 0 0 0
0.0014 8.1991 -0.0000 -3.9745 -0.0014 0 0 0
-0.0209 -0.0000 0.0420 0.0014 -0.0209 0 0 0
0 -3.9745 0.0014 8.1991 -0.0000 -3.9745 -0.0014 0
0 -0.0014 -0.0209 -0.0000 0.0420 0.0014 -0.0209 0
0 0 0 -3.9745 0.0014 8.1991 -0.0000 -0.0014
0 0 0 -0.0014 -0.0209 -0.0000 0.0420 -0.0209
0 0 0 0 0 -0.0014 -0.0209 0.0210];
K =[ 0.1808 -0.9600 0.0592 0 0 0 0 0
-0.9600 23.3600 0.0000 -11.6800 0.9600 0 0 0
0.0592 0 0.3617 -0.9600 0.0592 0 0 0
0 -11.6800 -0.9600 23.3600 0.0000 -11.6800 0.9600 0
0 0.9600 0.0592 0 0.3617 -0.9600 0.0592 0
0 0 0 -11.6800 -0.9600 23.3600 0.0000 0.9600
0 0 0 0.9600 0.0592 0 0.3617 0.0592
0 0 0 0 0 0.9600 0.0592 0.1808];
R =[ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ] ;
G = [zeros(8) ones(8);
M\(-R) M\(-K)];
%% Initial conditions
Z0 =[ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0];
% The first 8 values are displacements, the last 8 are velocities.
%% Times
dt = 0.1;
tspan = 0:dt:10;
%% ODE call
[t,Z]=ode45(@(t,Z) odefun(t,Z,G),tspan,Z0);
X = Z(:,1:8);
V = Z(:,9:16);
%% Plots
subplot(2,1,1)
plot(t,X),grid
title('displacements')
xlabel('time'),ylabel('X')
subplot(2,1,2)
plot(t,V),grid
title('velocities')
xlabel('time'),ylabel('V')
%% Function
function dZdt = odefun(~,Z,G)
X = Z(1:8); % current displacements
V = Z(9:16); % current velocities
dZdt = G*[X; V];
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by