![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1376509/image.png)
How to solve "system contains a nonlinear equation"
3 次查看(过去 30 天)
显示 更早的评论
Hello, when I run the code below, I get an error because the square of the second derivative of y(x) is used. Could someone please tell me how I can solve this type of problem?
syms y(x) x Y
mum=2;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
l=0.5;
t0= ((1/(r+p*s-m))^(1/(1-a-b)))+((1/(r+p*s-m))^(1/(1-a-b)))*((1/(r+t*p*s-m))^(1/(1-l)));
Dy = diff(y);
D2y = diff(y,2);
mo=1/(r-((p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
mi=1/(r-((t*p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
ode = y-(1/x)*(mo^(1/(1-a-b))+mo^(1/(1-a-b))* mi^(1/(1-l)));
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
bcfcn = @(ya,yb)[ya(1)-t0;yb(1)];
xmesh = linspace(1,80,150);
solinit = bvpinit(xmesh, [0 0]);
sol = bvp4c(odefcn,bcfcn,solinit);
plot(sol.x,sol.y(1,:))
0 个评论
回答(1 个)
Walter Roberson
2023-5-7
编辑:Walter Roberson
2023-5-7
syms y(x) x Y
mum=2;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
l=0.5;
t0= ((1/(r+p*s-m))^(1/(1-a-b)))+((1/(r+p*s-m))^(1/(1-a-b)))*((1/(r+t*p*s-m))^(1/(1-l)));
Dy = diff(y);
D2y = diff(y,2);
mo=1/(r-((p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
mi=1/(r-((t*p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
ode = y-(1/x)*(mo^(1/(1-a-b))+mo^(1/(1-a-b))* mi^(1/(1-l)));
ode
The denominator has d^2y/dx^2 in it, and that term is squared, so the square of d^2y/dx^2 appears in the equation.
sode = simplify(expand(ode(x)), 'steps', 50)
If you look at
which is d^2y/dx^2 you can see that it appears to the 4th power in the expanded version, so the situation might be even worse than it seems at first.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1376509/image.png)
6 个评论
Torsten
2023-5-7
编辑:Torsten
2023-5-7
Then try it out:
syms y Dy D2y x Y
mum=2;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
l=0.5;
t0= ((1/(r+p*s-m))^(1/(1-a-b)))+((1/(r+p*s-m))^(1/(1-a-b)))*((1/(r+t*p*s-m))^(1/(1-l)));
mo=1/(r-((p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
mi=1/(r-((t*p*Dy*x*s*mum)/y)-((Dy*x*mum)/y)+((Dy*x*mum*m)/y)-((Dy*x*(s^2)*(mum^2))/y)-((D2y*(x^2)*(s^2)*(mum^2))/(2*y)));
ode = y-(1/x)*(mo^(1/(1-a-b))+ mi^(1/(1-l)))
D2ynum = solve(ode==0,D2y);
D2ynum = D2ynum(2);
f = matlabFunction(D2ynum,"Vars",{x, [y Dy]});
odefcn = @(x,y)[y(2);f(x,[y(1),y(2)])];
bcfcn = @(ya,yb)[ya(1)-t0;yb(1)];
xmesh = linspace(1,80,150);
solinit = bvpinit(xmesh, [1 1]);
sol = bvp4c(odefcn,bcfcn,solinit);
plot(sol.x,sol.y)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Optimization Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!