Fit data to a hill equation using lsqnonlin

17 次查看(过去 30 天)
Hi guys,
I'm trying to fit some data to a hill equation. My X-Axis:
Agonist = [0.1 0.5 1 5 10 19 50 100 114 500 1000 2000];
My Y-Axis:
atRA = [0 0 7 15 30 50 58 80 83 87 90 90];
My function:
function [F] = hill_fit(x,Emax,EC50)
num = Emax*x;
denom = EC50+x
F = num./denom
end
My fitting code:
EMax = 90;
EC50 = 19;
x = lsqnonlin(@hill_fit,Agonist,Emax,EC50,atRA);
However this gives me a shed load of warmings so I don't think its doing what I want it to. In essence all I want to do is fit the data to the hill equation, can anybody help?
Thanks

采纳的回答

Star Strider
Star Strider 2015-4-11
I don’t recognise this particular Hill equation (there are several), but that aside, estimating your parameters and plotting them is relatively straightforward:
Agonist = [0.1 0.5 1 5 10 19 50 100 114 500 1000 2000];
atRA = [0 0 7 15 30 50 58 80 83 87 90 90];
% MAPPING: Emax = b(1), EC50 = b(2)
hill_fit = @(b,x) b(1).*x./(b(2)+x);
b0 = [90; 19]; % Initial Parameter Estimates
B = lsqcurvefit(hill_fit, b0, Agonist, atRA);
AgVct = linspace(min(Agonist), max(Agonist)); % Plot Finer Resolution
figure(1)
plot(Agonist, atRA, 'bp')
hold on
plot(AgVct, hill_fit(B,AgVct), '-r')
hold off
grid
xlabel('Agonist')
ylabel('atRA')
legend('Data', 'Hill Equation Fit', 'Location','SE')
If you’re doing curve-fitting, it’s easiest to use the lsqcurvefit function. It uses lsqnonlin but is specifically designed to make curve-fitting straightforward.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Interpolation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by