optimize four functions together
3 次查看(过去 30 天)
显示 更早的评论
Hello,
I have four functions and I want to optimize them together by ga. I know that I can solve each function alone and I already got an answer about that, but if I have all of them. The values I want to get is F1=0.405, F2=24.736 ,F3=0.525, F4=14.97. I approciate any help.
F1=@(x) 0.25-4.27*x(1)+0.61*x(2)+13.34*x(1)*x(2)-4.69*x(2).^2;
F2 = @(x) 30.07+71.68*x(1)-21.83*x(2)-306.55*x(1)*x(2)+179*x(2)^2;
F3 = @(x) 0.54-18.32*x(3)-10.6*x(1)-3.22*x(2)+0.3*x(4)+273.71*x(3)*x(1)+60.28*x(1)*x(2)-19.81*x(2).^2;
F4 = @(x) 17.39+1246.36*x(3)+348.83*x(1)-88.27*x(2)-43.72*x(4)-24455.25*x(3)*x(1)-1164.66*x(1)*x(2)+347.38*x(2)*x(4);
FitnessFunction=[F1;F2;F3;F4];
% [ fn, fc, f0, ff] ; % the range like this
lb = [0.001,0.01,0.0002,0.1];
ub = [0.045,0.1,0.0045,0.2];
numberOfVariables = 4;
A = []; b = [];
Aeq = []; beq = [];
[x,fval] = ga(FitnessFunction, numberOfVariables, A, b, Aeq, beq, lb, ub)
Many thanks
0 个评论
采纳的回答
Walter Roberson
2023-5-24
移动:Matt J
2023-5-24
6 个评论
Walter Roberson
2023-5-25
Option 1: functions are independent, but for some reason you want to call an optimizer only once instead of making four separate optimization calls. Note that this approach will always be less efficient than making separate optimization calls:
F1=@(x) 0.25-4.27*x(1)+0.61*x(2)+13.34*x(1)*x(2)-4.69*x(2).^2;
F2 = @(x) 30.07+71.68*x(1)-21.83*x(2)-306.55*x(1)*x(2)+179*x(2)^2;
F3 = @(x) 0.54-18.32*x(3)-10.6*x(1)-3.22*x(2)+0.3*x(4)+273.71*x(3)*x(1)+60.28*x(1)*x(2)-19.81*x(2).^2;
F4 = @(x) 17.39+1246.36*x(3)+348.83*x(1)-88.27*x(2)-43.72*x(4)-24455.25*x(3)*x(1)-1164.66*x(1)*x(2)+347.38*x(2)*x(4);
FitnessFunction = @(x)[F1(x(1:2));F2(x(3:4));F3(x(5:8));F4(x(9:12))];
lb = [0.001,0.01,0.001,0.01,0.001,0.01,0.0002,0.1,0.001,0.01,0.0002,0.1]
ub = [0.045,0.1,0.045,0.1,0.045,0.1,0.0045,0.2,0.045,0.1,0.0045,0.2]
numberOfVariables = length(lb);
A = []; b = [];
Aeq = []; beq = [];
[x,fval] = gamultiobj(FitnessFunction, numberOfVariables, A, b, Aeq, beq, lb, ub)
Walter Roberson
2023-5-25
Option 2: variables are shared, x(1) is the same variable for each, x(2) is the same for each, x(3) is the same for each that uses it, etc.
F1=@(x) 0.25-4.27*x(1)+0.61*x(2)+13.34*x(1)*x(2)-4.69*x(2).^2;
F2 = @(x) 30.07+71.68*x(1)-21.83*x(2)-306.55*x(1)*x(2)+179*x(2)^2;
F3 = @(x) 0.54-18.32*x(3)-10.6*x(1)-3.22*x(2)+0.3*x(4)+273.71*x(3)*x(1)+60.28*x(1)*x(2)-19.81*x(2).^2;
F4 = @(x) 17.39+1246.36*x(3)+348.83*x(1)-88.27*x(2)-43.72*x(4)-24455.25*x(3)*x(1)-1164.66*x(1)*x(2)+347.38*x(2)*x(4);
FitnessFunction = @(x)[F1(x(1:2));F2(x(1:2));F3(x(1:4));F4(x(1:4))];
lb = [0.001,0.01,0.0002,0.1];
ub = [0.045,0.1,0.0045,0.2];
numberOfVariables = length(lb);
A = []; b = [];
Aeq = []; beq = [];
[x,fval] = gamultiobj(FitnessFunction, numberOfVariables, A, b, Aeq, beq, lb, ub)
更多回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Quadratic Programming and Cone Programming 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!