Not enough input arguments. Error in iyp2. there are 4 varible@(tau,ztau,zpa,t) in the iyP(tau,ztau,zpa,t)but t is independent for sum

1 次查看(过去 30 天)
timerperpeture()
Not enough input arguments.

Error in solution>@(tau,ztau,zpa,t)cell2mat(arrayfun(@(tau,ztau,zpa,t)iyP(tau,ztau,zpa,t),tau,ztau,zpa,t,'UniformOutput',0)) (line 32)
iyp2=@(tau,ztau,zpa,t)cell2mat(arrayfun(@(tau,ztau,zpa,t)iyP(tau,ztau,zpa,t),tau,ztau,zpa,t,'UniformOutput',0));

Error in solution>@(tau,ztau,zpa)((-1).^(t)).*real(iyp2(tau,ztau,zpa).*sqrt(2*alphaP).*(ztau.^(nu+1))./(sinh(zpa.*sqrt(alphaP/2)).*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alphaP).*coth(zpa.*sqrt(alphaP/2))))) (line 33)
H2=@(t)@(tau,ztau,zpa)((-1).^(t)).*real(iyp2(tau,ztau,zpa).*sqrt(2*alphaP).*(ztau.^(nu+1))./(sinh(zpa.*sqrt(alphaP/2)).*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alphaP).*coth(zpa.*sqrt(alphaP/2)))));

Error in solution>@(tau,ztau,zpa)la(tau,ztau,zpa)+sum(gH2(tau,ztau,zpa)) (line 35)
fgH2=@(tau,ztau,zpa)la(tau,ztau,zpa)+sum(gH2(tau,ztau,zpa));

Error in solution>@(tau,ztau,zpa)(fgH2(tau,ztau,zpa)+C(2:IP).*UMY(tau,ztau,zpa)) (line 44)
F=@(tau,ztau,zpa)(fgH2(tau,ztau,zpa)+C(2:IP).*UMY(tau,ztau,zpa));

Error in solution>@(tau,ztau,zpa)(exp(9/2)/B)*sum(F(tau,ztau,zpa))/8192*(s0*exp(vaps-r*tau)*normcdf(d1)-K*exp(-r*tau)*normcdf(d2)) (line 45)
AVGSU=@(tau,ztau,zpa)(exp(9/2)/B)*sum(F(tau,ztau,zpa))/8192*(s0*exp(vaps-r*tau)*normcdf(d1)-K*exp(-r*tau)*normcdf(d2));

Error in solution>@(tau,ztau,zpa)AVGSU(tau,ztau,zpa) (line 51)
Pfin=integral3(@(tau,ztau,zpa)AVGSU(tau,ztau,zpa),0,B,0,1,0,1,'AbsTol', 0,'RelTol',1) %inner expectation

Error in integral3>@(y,z)fun(x(1)*ones(size(z)),y,z) (line 129)
@(y,z)fun(x(1)*ones(size(z)),y,z), ...

Error in integral2Calc>integral2t/tensor (line 228)
Z = FUN(X,Y); NFE = NFE + 1;

Error in integral2Calc>integral2t (line 55)
[Qsub,esub] = tensor(thetaL,thetaR,phiB,phiT);

Error in integral2Calc (line 9)
[q,errbnd] = integral2t(fun,xmin,xmax,ymin,ymax,optionstruct);

Error in integral3>innerintegral (line 128)
Q1 = integral2Calc( ...

Error in integral3>@(x)innerintegral(x,fun,yminx,ymaxx,zminxy,zmaxxy,integral2options) (line 111)
f = @(x)innerintegral(x, fun, yminx, ymaxx, ...

Error in integralCalc/iterateScalarValued (line 314)
fx = FUN(t);

Error in integralCalc/vadapt (line 132)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen);

Error in integralCalc (line 75)
[q,errbnd] = vadapt(@AtoBInvTransform,interval);

Error in integral3 (line 113)
Q = integralCalc(f,xmin,xmax,integralOptions);

Error in solution>timerperpeture (line 51)
Pfin=integral3(@(tau,ztau,zpa)AVGSU(tau,ztau,zpa),0,B,0,1,0,1,'AbsTol', 0,'RelTol',1) %inner expectation
function [Pfin]=timerperpeture(s0,v0,sigma,kappa,K,B) %varibles
s0=100;
v0=0.001;
K=90;
B=0.001;
r=0.01;
sigma=0.15;
kappa=0.1;
rho=0.5;
zpath=(2*sqrt(v0))/sigma;
deta=(4*kappa)/(sigma^2); % Bessel process parameter
nu=deta/2-1; % bessel model index
%syms tau ztau zpa
d=sqrt((1-rho^2)*B);
vaps=@(tau,ztau,zpa)-rho*(2*kappa/(sigma^2)-0.5).*(zpa)+(r*tau)-(B/2)+rho.*(ztau-zpath);
d1=@(tau,ztau,zpa)((log(s0/K)+vaps(tau,ztau,zpa)+(1-rho^2)*B))/d;
d2=@(tau,ztau,zpa)d1-d;
%% laplace inverse
alpha=(9)/(2*B); % laplace parameter,10
f1=@(tau,ztau,zpa,u)((2*sqrt(2*alpha*zpath.*ztau)./(sinh(tau.*sqrt(alpha./2))))./sqrt((pi^3).*zpa).*exp(-(2*sqrt(2*alpha*zpath.*ztau)./(sinh(tau.*sqrt(alpha./2)))).*cosh(u)-(pi^2)./(4.*zpa)-(u.^2)./(4.*zpa)).*sinh(u).*sin(pi.*u./(2.*zpa)));
iy1=@(tau,ztau,zpa)integral(@(u)f1(tau,ztau,zpa,u),0,200*pi,'ArrayValued',1);
iy2=@(tau,ztau,zpa)cell2mat(arrayfun(@(tau,ztau,zpa)iy1(tau,ztau,zpa),tau,ztau,zpa,'UniformOutput',0));
la=@(tau,ztau,zpa)0.5*real(iy2(tau,ztau,zpa).*sqrt(2*alpha).*(ztau.^(nu+1))./(sinh(tau.*sqrt(alpha./2)).*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alpha).*coth(zpa.*sqrt(alpha/2)))));
%la=0.5*real(iy2.*sqrt(2*alpha).*(ztau.^(nu+1))./(sh.*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alpha).*coth(zpa.*sqrt(alpha/2)))));
%% circle
NTR=5;
alphaP=@(t)complex(alpha,(t*pi)/B);
iyfP=@(tau,ztau,zpa,t,u)(2*sqrt(2*alphaP*zpath.*ztau)./sinh(zpa.*sqrt(alphaP/2)))./sqrt(pi^3.*tau).*exp(-(2*sqrt(2*alphaP*zpath.*ztau)./sinh(zpa.*sqrt(alphaP/2))).*cosh(u)-(pi^2-u.^2)./(4.*tau)).*sinh(u).*sin(pi.*u./2.*tau);
iyP=@(tau,ztau,zpa,t)integral(@(u)iyfP(tau,ztau,zpa,t,u),0,200*pi,'ArrayValued',1);
iyp2=@(tau,ztau,zpa,t)cell2mat(arrayfun(@(tau,ztau,zpa,t)iyP(tau,ztau,zpa,t),tau,ztau,zpa,t,'UniformOutput',0));
H2=@(t)@(tau,ztau,zpa)((-1).^(t)).*real(iyp2(tau,ztau,zpa).*sqrt(2*alphaP).*(ztau.^(nu+1))./(sinh(zpa.*sqrt(alphaP/2)).*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alphaP).*coth(zpa.*sqrt(alphaP/2)))));
gH2=H2(2:NTR);
fgH2=@(tau,ztau,zpa)la(tau,ztau,zpa)+sum(gH2(tau,ztau,zpa));
IP=14;
alpha2=@(N)complex(alpha,((NTR+N)*pi)/B);
sh2=@(N)sinh(zpa.*sqrt(alpha2/2));
gP2=@(N)2*sqrt(2*alpha2*zpath.*ztau)./sh2;
iyP2=@(N)@(tau,ztau,zpa)integral(@(u)gP2./sqrt(pi^3.*tau).*exp(-gP.*cosh(u)-(pi^2-u.^2)./(4.*tau)).*sinh(u).*sin(pi.*u./2.*tau),0,200*pi,'ArrayValued',1);
MY=@(N)@(tau,ztau,zpa)(-1)^(NTR+N).*real(iyP2.*sqrt(2*alpha2).*(ztau.^(nu+1))./(sh2.*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alpha2).*coth(zpa.*sqrt(alpha2/2)))));
UMY=MY(1:IP);
C=[1,14,91,364,1001,1848,3003,3432,3003,1848,1001,364,91,14,1];
F=@(tau,ztau,zpa)(fgH2(tau,ztau,zpa)+C(2:IP).*UMY(tau,ztau,zpa));
AVGSU=@(tau,ztau,zpa)(exp(9/2)/B)*sum(F(tau,ztau,zpa))/8192*(s0*exp(vaps-r*tau)*normcdf(d1)-K*exp(-r*tau)*normcdf(d2));
% dx=find(isnan(AVGSU)~=0);
% AVGSU(dx)=0;
% dy=find(isnan(AVGSU1)~=0);
% AVGSU1(dy)=0;
%disthree=@(tau,ztau,zpa,u)(U.*AVGSU)./8192;
Pfin=integral3(@(tau,ztau,zpa)AVGSU(tau,ztau,zpa),0,B,0,1,0,1,'AbsTol', 0,'RelTol',1) %inner expectation
end

回答(1 个)

Walter Roberson
Walter Roberson 2023-6-20
iyp2=@(tau,ztau,zpa,t)cell2mat(arrayfun(@(tau,ztau,zpa,t)iyP(tau,ztau,zpa,t),tau,ztau,zpa,t,'UniformOutput',0));
iyp2 is defined as expecting four input parameters: tau, ztau, zpa, t
H2=@(t)@(tau,ztau,zpa)((-1).^(t)).*real(iyp2(tau,ztau,zpa).*sqrt(2*alphaP).*(ztau.^(nu+1))./(sinh(zpa.*sqrt(alphaP/2)).*8*(zpath^(nu))).*exp(-(nu^2).*tau.*(sigma^2)/8-((zpath+ztau).*sqrt(2*alphaP).*coth(zpa.*sqrt(alphaP/2)))));
H2 calls iyp2 with only three input parameters: tau, ztau, zpa . It is missing the t value.
  1 个评论
JICHAO ZHANG
JICHAO ZHANG 2023-6-20
I would like to do a cycle for t.
for example, t*exp(xyz),
then for t=1:5; there are vector
1*exp(xyz),2*exp(xyz),3*exp(xyz),4*exp(xyz),5*exp(xyz),
next step make sum, 1*exp(xyz)+2*exp(xyz)+3*exp(xyz)+4*exp(xyz)+5*exp(xyz),
finally, do integral by x,y,z varibles

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Bessel functions 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by