lsqcurvefit Fitting kinetic model to estimate kinetic parameter.

18 次查看(过去 30 天)
I found this code in the community and used it for my own data(Thanks to the provider of the code), but no matter how I ran it, the data didn't fit well. How can I find the right initial value? Or what other function should I use to estimate my parameters?
These are the parameters I got from running.
Theta( 1) = 0.00221
Theta( 2) = 0.00427
Theta( 3) = 0.00042
Theta( 4) = 0.00816
Theta( 5) = 0.00076
Theta( 6) = 0.00000
Theta( 7) = 0.00000
Theta( 8) = 0.00000
Theta( 9) = 0.00002
Theta(10) = 2.94054
Theta(11) = 0.02476
The code is as follows:
clc;
clear all;
t=[ 0
10
20
30
40
50
60];
c=[ 100 100 0 0 0 0 0
94.77333333 93.73333333 0.400145927 0.27701074 0.107176434 0.158130584 0.000505722
84.48 88.87333333 0.604820791 0.42039699 0.148464431 0.359954181 0.001077632
73.91333333 83.23333333 0.589530533 0.461026019 0.17071451 0.508774341 0.001205872
68.80666667 76.43333333 0.529979 0.48559649 0.180350987 0.635601375 0.001720902
63.56666667 73.92 0.502282172 0.52315421 0.198918834 0.700114548 0.002064255
59.76666667 70.59333333 0.478273783 0.574401193 0.207380132 0.845269187 0.002895749
];
theta0=rand(11,1)*1E-3;
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit(@kinetics,theta0,t,c,zeros(size(theta0)));
fprintf(1,'\tRate Constants:\n')
for k1 = 1:numel(theta)
fprintf(1, '\t\tTheta(%2d) = %8.5f\n', k1, theta(k1))
end
tv = linspace(min(t), max(t));
Cfit = kinetics(theta, tv);
figure(1)
hd = plot(t, c, 'p');
for k1 = 1:size(c,2)
CV(k1,:) = hd(k1).Color;
hd(k1).MarkerFaceColor = CV(k1,:);
end
hold on
hlp = plot(tv, Cfit);
for k1 = 1:size(c,2)
hlp(k1).Color = CV(k1,:);
end
hold off
grid
xlabel('Time')
ylabel('Concentration')
legend(hlp, 'c(1)', 'c(2)', 'c(3)', 'c(4)', 'c(5)','c(6)','c(7)', 'Location','best');
function C=kinetics(theta,t)
c0=[100; 100; 0; 0; 0; 0; 0];
[T,Cv]=ode45(@DifEq,t,c0);
function dC=DifEq(t,c)
dcdt=zeros(7,1);
dcdt(1)=-theta(1)*c(1)-theta(2)*c(1)-theta(3)*c(1)-theta(9)*c(1)*c(2);
dcdt(2)=-theta(4)*c(2)*c(3)-theta(5)*c(2)*c(4)-theta(6)*c(2)*c(3)-theta(7)*c(2)*c(4)-theta(8)*c(2)-theta(9)*c(2)*c(1);
dcdt(3)= theta(2)*c(1)-theta(4)*c(2)*c(3)-theta(6)*c(2)*c(3);
dcdt(4)= theta(3)*c(1)-theta(5)*c(2)*c(4)-theta(7)*c(2)*c(4);
dcdt(5)= theta(4)*c(2)*c(3)-theta(10)*c(5)+theta(9)*c(2)*c(1);
dcdt(6)= theta(5)*c(2)*c(4)-theta(11)*c(6);
dcdt(7)= theta(6)*c(2)*c(3)+theta(7)*c(2)*c(4)+theta(8)*c(2);
end
C=Cv;
end

采纳的回答

Star Strider
Star Strider 2023-6-30
That does not appear to me to be the same data.
I get decent results except for and , leading me to believe that there is something wrong with their differential equations. Please check them.
% clc;
% clear all;
t=[ 0
10
20
30
40
50
60];
c=[ 100 100 0 0 0 0 0
94.77333333 93.73333333 0.400145927 0.27701074 0.107176434 0.158130584 0.000505722
84.48 88.87333333 0.604820791 0.42039699 0.148464431 0.359954181 0.001077632
73.91333333 83.23333333 0.589530533 0.461026019 0.17071451 0.508774341 0.001205872
68.80666667 76.43333333 0.529979 0.48559649 0.180350987 0.635601375 0.001720902
63.56666667 73.92 0.502282172 0.52315421 0.198918834 0.700114548 0.002064255
59.76666667 70.59333333 0.478273783 0.574401193 0.207380132 0.845269187 0.002895749
];
theta0 = [rand(11,1)*1E-3; c(1,:).'];
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit(@kinetics,theta0,t,c,zeros(size(theta0)));
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
fprintf(1,'\tRate Constants:\n')
Rate Constants:
for k1 = 1:numel(theta)
fprintf(1, '\t\tTheta(%2d) = %8.5f\n', k1, theta(k1))
end
Theta( 1) = 0.00256 Theta( 2) = 0.00146 Theta( 3) = 0.00056 Theta( 4) = 0.00230 Theta( 5) = 0.00094 Theta( 6) = 0.00000 Theta( 7) = 0.00000 Theta( 8) = 0.00000 Theta( 9) = 0.00005 Theta(10) = 2.86843 Theta(11) = 0.04557 Theta(12) = 101.54545 Theta(13) = 100.16133 Theta(14) = 0.00000 Theta(15) = 0.00000 Theta(16) = 0.00036 Theta(17) = 0.00000 Theta(18) = 0.00000
tv = linspace(min(t), max(t));
Cfit = kinetics(theta, tv);
figure(1)
hd = plot(t, c, 'p');
for k1 = 1:size(c,2)
CV(k1,:) = hd(k1).Color;
hd(k1).MarkerFaceColor = CV(k1,:);
end
hold on
hlp = plot(tv, Cfit);
for k1 = 1:size(c,2)
hlp(k1).Color = CV(k1,:);
end
hold off
grid
xlabel('Time')
ylabel('Concentration')
legend(hlp, 'c(1)', 'c(2)', 'c(3)', 'c(4)', 'c(5)','c(6)','c(7)', 'Location','best');
figure
for k = 1:size(c,2)
subplot(4,2,k)
plot(t,c(:,k),'bp', 'MarkerFaceColor','b')
hold on
plot(tv, Cfit(:,k))
hold off
grid
title("C_"+k)
end
function C=kinetics(theta,t)
% c0=[100; 100; 0; 0; 0; 0; 0];
c0 = theta(end-6:end);
[T,Cv]=ode45(@DifEq,t,c0);
function dcdt=DifEq(t,c)
dcdt=zeros(7,1);
dcdt(1)=-theta(1)*c(1)-theta(2)*c(1)-theta(3)*c(1)-theta(9)*c(1)*c(2);
dcdt(2)=-theta(4)*c(2)*c(3)-theta(5)*c(2)*c(4)-theta(6)*c(2)*c(3)-theta(7)*c(2)*c(4)-theta(8)*c(2)-theta(9)*c(2)*c(1);
dcdt(3)= theta(2)*c(1)-theta(4)*c(2)*c(3)-theta(6)*c(2)*c(3);
dcdt(4)= theta(3)*c(1)-theta(5)*c(2)*c(4)-theta(7)*c(2)*c(4);
dcdt(5)= theta(4)*c(2)*c(3)-theta(10)*c(5)+theta(9)*c(2)*c(1);
dcdt(6)= theta(5)*c(2)*c(4)-theta(11)*c(6);
dcdt(7)= theta(6)*c(2)*c(3)+theta(7)*c(2)*c(4)+theta(8)*c(2);
end
C=Cv;
end
I changed the code slightly to add the initial conditions as parameters to be estimated, since in my experience, that generally produces better results, even if the initial conditions themselves do not change much from their original values. (I added the subplot array because otherwise the last 5 compartments are squashed together at the lower end of the first plot.)
.
  14 个评论
dinesh kumar s
dinesh kumar s 2023-9-10
@Star Strider Hi, I was working on similar problem like this and ofcourse I was using the same code written by you for the kinetic modeling. I hope the parameters are good. I just want to thank you @Star Strider for the code. It works well and good. Thanks.

请先登录,再进行评论。

更多回答(0 个)

产品


版本

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by