best approximation for double numbers

3 次查看(过去 30 天)
I have the following function which has an asymptote for y = 1 :
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )));
So, so the function should have a value < 1 for all x.
Also using "format long", of course, from a certain value of x onwards, the result of the function is approximated to 1.
format long
double(f(400)) % ans = 1
Is there a way to get an approximation to the exact value for even larger x? Or should I settle for this approximation?

采纳的回答

VBBV
VBBV 2023-7-21
format long
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
vpa(f(400),100)
ans = 
0.9999999999999999981792806433707777978855866136633285567221016451791545277454316141363423975013892837
  2 个评论
VBBV
VBBV 2023-7-21
Try using vpa for large values of x
Walter Roberson
Walter Roberson 2023-7-21
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
f1 = simplify(expand(1-f))
f1(x) = 
double(f1(400))
ans = 1.8207e-18
fplot(f1,[500 600])
f1n = matlabFunction(f1)
f1n = function_handle with value:
@(x)1.0./(exp(x./1.0e+1+8.473e-1)+1.0)
fplot(f1n, [500 600])
f1 gives you an idea of how quickly the value approaches 1, by showing you how quickly the difference between 1 and f falls. f1n shows that a numeric approximation (instead of a symbolic) of 1-f is still not bad at all in this kind of range.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by