yy3 is generating a straight line while it should generate a curve, i don't understand what is wrong!!!

1 次查看(过去 30 天)
function ABC
% Initialization of paramters
Pr=6.2;
M=4;
Bi=0.3;
beta=0.2;
ks1=0.5;
ks2=0.1;
rhos1=0.2;
rhos2=0.3;
n=3;
kbf=0.598;
phi1=0.1;
phi2=0.04;
rhocps1=0.3;
rhocps2=0.1;
rhof=997.1;
kf=0.613;
rhocpf=4179;
A1=((1-phi1)^(2.5)).*((1-phi2)^(2.5));
B1=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;
A2=B1*(1/rhof); % rho_Hnf/rho_f
B2=ks2+(n-1)*kbf-(n-1)*(kbf-ks2).*phi2;
B3=ks2+(n-1)*kbf+(kbf-ks2).*phi2;
C5=B2/B3; % k_Hnf/k_bf Nanofluid Constant
B4=ks1+(n-1)*kf-(n-1)*(kf-ks1).*phi1;
B5=ks1+(n-1)*kf+(kf-ks1).*phi1;
C6=B4/B5; % k_bf/k_f
A4=C5*C6; % k_Hnf/k_f
B6=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % rhocp_Hnf
B7=1/rhocpf;
A3=B6*B7; % rhocp_Hnf/rhocp_f
% Initial Condition Input
sol = bvpinit(linspace(0,8,100), [1 0 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
%%% Plotting of the temperature
plot(x1, y1(7, :))
hold on
function res=bcexam2(y0, yinf)
res=[y0(2)-1;y0(5)-beta;y0(1)+y0(4);y0(8)+(Bi/A4)*(1-y0(7)); yinf(2);yinf(5);yinf(7); yinf(4)];
end
function dydx = bvpexam2(~,y)
yy1=A1*(A2*(y(2)^2-(y(1)+y(4))*y(3))+M*y(2));
yy2 = A1*(A2*(y(5)^2-(y(1)+y(4))*y(6))+M*y(5));
yy3 =-(A3/A4)*Pr*(y(1)+y(4))*y(8);
dydx= [y(2);y(3);yy1;y(5);y(6);yy2;y(7);yy3];
end
end
  4 个评论

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2023-8-11
编辑:Torsten 2023-8-11
As initial condition for y(7), you set y(7) = 0, and you define the differential equation for y(7) as dy(7)/dx = y(7). The solution is y(7) = 0 for all x - and that's what is plotted.
The line
dydx= [y(2);y(3);yy1;y(5);y(6);yy2;y(7);yy3];
must read
dydx= [y(2);y(3);yy1;y(5);y(6);yy2;y(8);yy3];
  3 个评论
Fareeha
Fareeha 2023-8-11
@Torsten i have another question
in function
function res=bcexam2(y0, yinf)
res=[y0(2)-1;y0(5)-beta;y0(1)+y0(4);y0(8)+(Bi/A4)*(1-y0(7)); yinf(2);yinf(5);yinf(7)];
end
I removed one BC, now i have 8 vectors in dydx and 7 BC, in such condition how could code work?
Torsten
Torsten 2023-8-11
You need as many boundary conditions as there are first-order differential equations. Otherwise, you get a one-dimensional solution manifold.
Consider
y '' = c with y(0) = 1
The solution is
y(x) = 1 + a1*x + c/2*x^2
with arbitrary parameter a1.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Price and Analyze Financial Instruments 的更多信息

标签

产品


版本

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by