Find the optimal value to maximize a function
19 次查看(过去 30 天)
显示 更早的评论
Hi everyone.....could anyone help......I need to find th optimal value of x0 and x1 to maximize R, where x1=d-x0..........the function MATLAB code:
close all; clear all; clc;
% System parameters
F = 10000; % Number of files
S = 100; % SBS cache capacity (set to 100)
M = 50; % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8; % Light speed
fr = 1e12; % Operating frequency
B = 10e6; % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016; % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30; % RIS-MBS distance
d_range = 1:1:40;
R = zeros(size(d_range));
for i = 1:length(d_range)
d = d_range(i);
sum1 = 0;
for f = 1:F
sum1 = sum1 + f^(-epsilon);
end
sum2 = 0;
for f = 1:M
sum2 = sum2 + f^(-epsilon)/sum1;
end
sum3 = 0;
for f = (M + 1):(M + (S - M) / eta)
sum3 = sum3 + (f^(-epsilon)) / sum1;
end
sum3 = sum3 * eta;
beta = (c/(4*pi*fr))^2; % Spreading loss index
Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
R(i) = Rt;
end
figure
plot(d_range, R, 'b^-')
xlabel('SBS-RIS Distance, d')
ylabel('Achievable Rate')
0 个评论
采纳的回答
Mathieu NOE
2023-8-23
Hi
seems to me that R curves goes up as x0 goes closer to zero (but not rqual to zero otherwise you get Inf values)
also all the small for loops to create the sum1, sum2,sum3 variables can be replaced with sum function directly
close all; clear all; clc;
x0_range = [0.01 0.25 0.5 1];
% System parameters
F = 10000; % Number of files
S = 100; % SBS cache capacity (set to 100)
M = 50; % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8; % Light speed
fr = 1e12; % Operating frequency
B = 10e6; % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016; % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30; % RIS-MBS distance
d_range = 1:1:40;
R = zeros(numel(d_range),numel(x0_range));
for k = 1:numel(x0_range)
x0 = x0_range(k);
for i = 1:length(d_range)
d = d_range(i);
x1 = d-x0; % added line
% sum1 = 0;
% for f = 1:F
% sum1 = sum1 + f^(-epsilon);
% end
f = 1:F;
sum1 = sum(f.^(-epsilon));
% sum2 = 0;
% for f = 1:M
% sum2 = sum2 + f^(-epsilon)/sum1;
% end
f = 1:M;
sum2 = sum(f.^(-epsilon))/sum1;
% sum3 = 0;
% for f = (M + 1):(M + (S - M) / eta)
% sum3 = sum3 + (f^(-epsilon)) / sum1;
% end
% sum3 = sum3 * eta;
f = (M + 1):(M + (S - M) / eta);
sum3 = eta*sum(f.^(-epsilon))/sum1;
beta = (c/(4*pi*fr))^2; % Spreading loss index
Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
R(i,k) = Rt;
leg{k} = ['x0 = ' num2str(x0)];
end
end
plot(d_range, R, '^-')
legend(leg)
xlabel('SBS-RIS Distance, d')
ylabel('Achievable Rate')
8 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Get Started with Problem-Based Optimization and Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!