Solving system of odes with a power using ode45

4 次查看(过去 30 天)
I have the following system of first order ode i would like to solve it using ode45 1) dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext 2) dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr 3) dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti 4) dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu Satisfying X(0)=Y(0)=Z(0)=U(0)=0 Where the functions are X, Y,Z and U and the variable is t. The others parameters are known constant It is possible toi solve it with ode45 ? Since a power appear in the first equation

采纳的回答

Sam Chak
Sam Chak 2023-9-19
编辑:Sam Chak 2023-9-19
I presume that Xinit is not equal to , and . I tested this with the ode45 solver, and it also works with non-zero initial values.
Method 1: Using the function ode45() directly
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Create a function handle F for a system of 1st-order ODEs:
F = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
tspan = [0 10];
y0 = [3; 2; 1; 0];
[t, y] = ode45(F, tspan, y0);
% Plotting the result
plot(t, y, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
Method 2: Using the 'ode' object (introduced in R2023b)
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Setting up the ODE object:
F = ode;
F.InitialValue = [3; 2; 1; 0];
F.ODEFcn = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
F.Solver = "ode45";
S = solve(F, 0, 10); % Solving F over the time from 0 to 10 s
% Plotting the result
plot(S.Time, S.Solution, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
  12 个评论
Thomas TJOCK-MBAGA
Thomas TJOCK-MBAGA 2023-9-19
Non i have the same system but with thd first equation be a PDE i would like to solve it pdepe solver and using ode45 1) 1) R*dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext -v*dX/dx + alpha*d^2X/dx^2 2) dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr 3) dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti 4) dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu Satisfying Y(0)=Z(0)=U(0)=0 X(t,0)=0; dX/dx(t,x=L)=0; X(t=0,x)=Xinit Where the functions are X, Y,Z and U and the variable are x and t. The others parameters are known constant. If frac=0 i know how to.solve it with Laplace transform and then by an intégration over the space domaine i obtain X(t) and then the functions. No

请先登录,再进行评论。

更多回答(1 个)

William Rose
William Rose 2023-9-19
编辑:William Rose 2023-9-19
Yes you can do it with ode45().
dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext
dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr
dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti
dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu
You want to replace X,Y,Z,U with x(1),x(2),x(3),x(4).
Your equation for dX/dt includes (X/Xinit)^frac. If Xinit=X(0), you have a divide-by-zero problem, since you said X(0)=0.

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

标签

产品


版本

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by