LU factorization with decreasing elements on the main diagonal of U

1 次查看(过去 30 天)
Does select P so that is decreasing?
If not, how can I request it?

回答(1 个)

Bruno Luong
Bruno Luong 2023-9-25
编辑:Bruno Luong 2023-9-25
Obviously not
A=[1 10 9;
5 1 9;
2 8 1]
A = 3×3
1 10 9 5 1 9 2 8 1
[L,U,P]=lu(A)
L = 3×3
1.0000 0 0 0.2000 1.0000 0 0.4000 0.7755 1.0000
U = 3×3
5.0000 1.0000 9.0000 0 9.8000 7.2000 0 0 -8.1837
P = 3×3
0 1 0 1 0 0 0 0 1
But you can fix the progression of abs(diag(U)) in any arbitray decrasing sequance you want, just scale appropiately L.
Here I select the sequene of U(1,1).*2.^(-(1:n-1))
% Fix it, assuming A is not singular
Ukk = abs(U(1,1));
for k=2:size(U,1)
s = Ukk/(2*abs(U(k,k)));
U(k,:) = s*U(k,:);
L(:,k) = L(:,k)/s;
Ukk = abs(U(k,k));
end
L
L = 3×3
1.0000 0 0 0.2000 3.9200 0 0.4000 3.0400 6.5469
U
U = 3×3
5.0000 1.0000 9.0000 0 2.5000 1.8367 0 0 -1.2500
P'*L*U % close to A
ans = 3×3
1 10 9 5 1 9 2 8 1
In some sense the question of scaling U alone is trivial and sort of useless if you don't specify what L should be.
Note that MATLAB returns L such that diag(L) are 1.
  5 个评论
Sara
Sara 2023-9-25
Thank you, you are right.
Last question, is there any option in matlab to generate a PLU factorization such that is decreasing without having to modify a lu factorization previously calculated by matlab?

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by