How to use a long matrix on matlab?

2 次查看(过去 30 天)
distMatrix = [0 25 4.2 4 23 6 23 1.4 9.5 2.3 27 26 28 2.5 8 6.3 22 5.4 22 31 20 1.8 25 7.8 5.7 28 9.8;
25 0 24 23 12 21 13 25 17 24 6.8 18 16 23 18 20 10 25 11 5.7 5.4 25 18 18 7.6 4.3 17;
4.2 24 0 0.2 20 4.7 17 3.1 4.8 3.9 25 30 39 2 4.3 2.6 20 8.4 20 29 18 2.7 23 4 3.1 25 4.9;
4 23 0.2 0 20 4.8 17 2.7 4.9 3.5 25 30 39 1.6 4.4 2.8 20 7.7 20 29 18 2.3 23 4.1 3.2 25 5;
23 12 20 20 0 20 24 24 16 23 9.1 30 28 23 17 21 1.9 24 1.7 17 7.7 25 6 16 9.1 11 16;
6 21 4.7 4.8 20 0 18 5.1 5.2 3.9 22 38 37 3.4 3.2 1.6 17 5 21 26 15 5.5 21 3.7 1 23 5;
23 13 17 17 24 18 0 22 12 21 19 18 17 19 14 17 23 22 23 7 18 22 30 14 0.4 17 13;
1.4 25 3.1 2.7 24 5.1 22 0 9.7 0.5 26 27 29 1.5 7 5.4 21 4.7 25 30 19 0.8 24 7.6 4.8 27 9.2;
9.5 17 4.8 4.9 16 5.2 12 9.7 0 8.2 19 35 33 6.4 1.9 4.6 14 9.5 14 23 12 9.7 17 1.1 3.8 19 0.5;
2.3 24 3.9 3.5 23 3.9 21 0.5 8.2 0 25 27 40 2 6.3 4.6 20 4.7 25 29 18 1.3 24 6.8 4.1 26 8.1;
27 6.8 25 25 9.1 22 19 26 19 25 0 25 23 25 20 22 7.5 27 7.9 12 10 27 15 19 12 2.4 19;
26 18 30 30 30 38 18 27 35 27 25 0 2 28 36 38 28 29 28 12 23 27 36 36 18 22 35;
28 16 39 39 28 37 17 29 33 40 23 2 0 30 35 37 27 31 27 11 22 29 35 35 17 21 34;
2.5 23 2 1.6 23 3.4 19 1.5 6.4 2 25 28 30 0 5.8 4 20 6.1 24 29 18 0.7 23 5.3 3.5 25 6.3 ;
8 18 4.3 4.4 17 3.2 14 7 1.9 6.3 20 36 35 5.8 0 2.7 15 7.4 16 24 13 7.8 18 0.9 2.3 21 1.8;
6.3 20 2.6 2.8 21 1.6 17 5.4 4.6 4.6 22 38 37 4 2.7 0 17 5.7 18 26 15 4.7 20 3.5 0.4 23 4.4;
22 10 20 20 1.9 17 23 21 14 20 7.5 28 27 20 15 17 0 31 1.2 16 6.1 22 7.8 15 7.6 9.8 14;
5.4 25 8.4 7.7 24 5 22 4.7 9.5 4.7 27 29 31 6.1 7.4 5.7 31 0 24 31 20 5.4 29 7.9 1.7 27 9.5;
22 11 20 20 1.7 21 23 25 14 25 7.9 28 27 24 16 18 1.2 24 0 16 6.5 25 7.3 15 7.9 11 14;
31 5.7 29 29 17 26 7 30 23 29 12 12 11 29 24 26 16 31 16 0 11 31 23 23 7 10 23 ;
20 5.4 18 18 7.7 15 18 19 12 18 10 23 22 18 13 15 6.1 20 6.5 11 0 20 14 13 2.3 7.6 12;
1.8 25 2.7 2.3 25 5.5 22 0.8 9.7 1.3 27 27 29 0.7 7.8 4.7 22 5.4 25 3120 0 25 6 5.6 27 7;
25 18 23 236 21 30 24 17 24 15 36 35 23 18 20 7.8 29 7.3 23 14 25 0 18 15 17 17;
7.8 18 4 4.1 16 3.7 14 7.6 1.1 6.8 19 36 35 5.3 0.9 3.5 15 7.9 15 23 13 6 18 0 2.8 20 1.2;
5.7 7.6 3.1 3.2 9.1 1 0.4 4.8 3.8 4.1 12 18 17 3.5 2.3 0.4 7.6 1.7 7.9 7 2.3 5.6 15 2.8 0 9.9 4.3;
28 4.3 25 25 11 23 17 27 19 26 2.4 22 21 25 21 23 9.8 27 11 10 7.6 27 17 20 9.9 0 19;
9.8 17 4.9 5 16 5 13 9.2 0.5 8.1 19 35 34 6.3 1.8 4.4 14 9.5 14 23 12 7 17 1.2 4.3 19 0
];
Error using vertcat
Dimensions of arrays being concatenated are not consistent.
populationSize = 100; % Population size for GA
maxGenerations = 1000; % Number of generations for GA
initialTemperature = 100; % Initial temperature for SA
coolingRate = 0.995; % Cooling rate for SA
mutationRate = 2; % Maximum number of iterations for SA
[bestTour, bestCost] = hybridTSP(distMatrix, populationSize, maxGenerations, initialTemperature, coolingRate, mutationRate);
disp('Best Tour:');
disp(bestTour);
disp(['Best Cost: ', num2str(bestCost)]);
function [bestTour, bestCost] = hybridTSP(distMatrix, populationSize, maxGenerations, initialTemperature, coolingRate, mutationRate)
numCities = size(distMatrix, 1);
% Generate initial tour using the nearest neighbor heuristic
initialTour = nearestNeighbor(distMatrix);
currentTour = initialTour;
bestTour = initialTour;
currentCost = calculateTourCost(currentTour, distMatrix);
bestCost = currentCost;
for generation = 1:maxGenerations
temperature = initialTemperature / (1 + coolingRate * generation);
% Apply Genetic Algorithm
population = generatePopulation(populationSize, numCities);
for i = 1:populationSize
population(i, :) = mutate(population(i, :), mutationRate);
end
[population, costs] = evaluatePopulation(population, distMatrix);
% Apply Simulated Annealing
for i = 1:populationSize
newTour = simulatedAnnealing(population(i, :), currentCost, temperature, distMatrix);
newCost = calculateTourCost(newTour, distMatrix);
if newCost < currentCost || rand() < exp((currentCost - newCost) / temperature)
currentTour = newTour;
currentCost = newCost;
if newCost < bestCost
bestTour = currentTour;
bestCost = newCost;
end
end
end
end
end
function tour = nearestNeighbor(distMatrix)
numCities = size(distMatrix, 1);
tour = zeros(1, numCities);
unvisited = 1:numCities;
currentCity = randi(numCities);
tour(1) = currentCity;
unvisited(unvisited == currentCity) = [];
for i = 2:numCities
nearestCity = unvisited(1);
minDistance = distMatrix(currentCity, nearestCity);
for j = 2:length(unvisited)
city = unvisited(j);
distance = distMatrix(currentCity, city);
if distance < minDistance
nearestCity = city;
minDistance = distance;
end
end
tour(i) = nearestCity;
currentCity = nearestCity;
unvisited(unvisited == nearestCity) = [];
end
end
function cost = calculateTourCost(tour, distMatrix)
numCities = length(tour);
cost = 0;
for i = 1:numCities-1
cost = cost + distMatrix(tour(i), tour(i+1));
end
cost = cost + distMatrix(tour(end), tour(1)); % Return to the starting city
end
function population = generatePopulation(populationSize, numCities)
population = zeros(populationSize, numCities);
for i = 1:populationSize
population(i, :) = randperm(numCities);
end
end
function mutatedTour = mutate(tour, mutationRate)
numCities = length(tour);
if rand() < mutationRate
% Swap two random cities
r1 = randi(numCities);
r2 = randi(numCities);
temp = tour(r1);
tour(r1) = tour(r2);
tour(r2) = temp;
end
mutatedTour = tour;
end
function [population, costs] = evaluatePopulation(population, distMatrix)
populationSize = size(population, 1);
costs = zeros(1, populationSize);
for i = 1:populationSize
costs(i) = calculateTourCost(population(i, :), distMatrix);
end
[~, idx] = sort(costs);
population = population(idx, :);
costs = costs(idx);
end
function newTour = simulatedAnnealing(tour, currentCost, temperature, distMatrix)
numCities = length(tour);
newTour = tour;
% Perform 2-opt swap
i = randi(numCities);
j = randi(numCities);
if i > j
temp = i;
i = j;
j = temp;
end
while i < j
temp = newTour(i);
newTour(i) = newTour(j);
newTour(j) = temp;
i = i + 1;
j = j - 1;
end
newCost = calculateTourCost(newTour, distMatrix);
if newCost < currentCost || rand() < exp((currentCost - newCost) / temperature)
currentCost = newCost;
else
% Revert the change
while i < j
temp = newTour(i);
newTour(i) = newTour(j);
newTour(j) = temp;
i = i + 1;
j = j - 1;
end
end
end
Hey everyone,
Please help me to fix this error. My algorithm is correct and it is running on small matrices. I have to solve the 27 by 27 matrix as provided here. Please help me to resolve the issue.
Thanks in advance!

采纳的回答

Dyuman Joshi
Dyuman Joshi 2023-9-26
The matrix is not 27x27. There are elements missing in the 22nd and 23rd row.
Check the data again.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Genetic Algorithm 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by