How to make change in the algorithm to start and end at a same point?

2 次查看(过去 30 天)
Hey Everyone,
Please help me to make a logical change in this algorithm. I want to run this algorithm to find the best possible route such that the route will start and end at city 1. While there are 27 cities and the distance matrix represents the distances between them.
distMatrix = [0 25 4.2 4 23 6 23 1.4 9.5 2.3 27 26 28 2.5 8 6.3 22 5.4 22 31 20 1.8 25 7.8 5.7 28 9.8;
25 0 24 23 12 21 13 25 17 24 6.8 18 16 23 18 20 10 25 11 5.7 5.4 25 18 18 7.6 4.3 17;
4.2 24 0 0.2 20 4.7 17 3.1 4.8 3.9 25 30 39 2 4.3 2.6 20 8.4 20 29 18 2.7 23 4 3.1 25 4.9;
4 23 0.2 0 20 4.8 17 2.7 4.9 3.5 25 30 39 1.6 4.4 2.8 20 7.7 20 29 18 2.3 23 4.1 3.2 25 5;
23 12 20 20 0 20 24 24 16 23 9.1 30 28 23 17 21 1.9 24 1.7 17 7.7 25 6 16 9.1 11 16;
6 21 4.7 4.8 20 0 18 5.1 5.2 3.9 22 38 37 3.4 3.2 1.6 17 5 21 26 15 5.5 21 3.7 1 23 5;
23 13 17 17 24 18 0 22 12 21 19 18 17 19 14 17 23 22 23 7 18 22 30 14 0.4 17 13;
1.4 25 3.1 2.7 24 5.1 22 0 9.7 0.5 26 27 29 1.5 7 5.4 21 4.7 25 30 19 0.8 24 7.6 4.8 27 9.2;
9.5 17 4.8 4.9 16 5.2 12 9.7 0 8.2 19 35 33 6.4 1.9 4.6 14 9.5 14 23 12 9.7 17 1.1 3.8 19 0.5;
2.3 24 3.9 3.5 23 3.9 21 0.5 8.2 0 25 27 40 2 6.3 4.6 20 4.7 25 29 18 1.3 24 6.8 4.1 26 8.1;
27 6.8 25 25 9.1 22 19 26 19 25 0 25 23 25 20 22 7.5 27 7.9 12 10 27 15 19 12 2.4 19;
26 18 30 30 30 38 18 27 35 27 25 0 2 28 36 38 28 29 28 12 23 27 36 36 18 22 35;
28 16 39 39 28 37 17 29 33 40 23 2 0 30 35 37 27 31 27 11 22 29 35 35 17 21 34;
2.5 23 2 1.6 23 3.4 19 1.5 6.4 2 25 28 30 0 5.8 4 20 6.1 24 29 18 0.7 23 5.3 3.5 25 6.3 ;
8 18 4.3 4.4 17 3.2 14 7 1.9 6.3 20 36 35 5.8 0 2.7 15 7.4 16 24 13 7.8 18 0.9 2.3 21 1.8;
6.3 20 2.6 2.8 21 1.6 17 5.4 4.6 4.6 22 38 37 4 2.7 0 17 5.7 18 26 15 4.7 20 3.5 0.4 23 4.4;
22 10 20 20 1.9 17 23 21 14 20 7.5 28 27 20 15 17 0 31 1.2 16 6.1 22 7.8 15 7.6 9.8 14;
5.4 25 8.4 7.7 24 5 22 4.7 9.5 4.7 27 29 31 6.1 7.4 5.7 31 0 24 31 20 5.4 29 7.9 1.7 27 9.5;
22 11 20 20 1.7 21 23 25 14 25 7.9 28 27 24 16 18 1.2 24 0 16 6.5 25 7.3 15 7.9 11 14;
31 5.7 29 29 17 26 7 30 23 29 12 12 11 29 24 26 16 31 16 0 11 31 23 23 7 10 23 ;
20 5.4 18 18 7.7 15 18 19 12 18 10 23 22 18 13 15 6.1 20 6.5 11 0 20 14 13 2.3 7.6 12;
1.8 25 2.7 2.3 25 5.5 22 0.8 9.7 1.3 27 27 29 0.7 7.8 4.7 22 5.4 25 31 20 0 25 6 5.6 27 7;
25 18 23 23 6 21 30 24 17 24 15 36 35 23 18 20 7.8 29 7.3 23 14 25 0 18 15 17 17;
7.8 18 4 4.1 16 3.7 14 7.6 1.1 6.8 19 36 35 5.3 0.9 3.5 15 7.9 15 23 13 6 18 0 2.8 20 1.2;
5.7 7.6 3.1 3.2 9.1 1 0.4 4.8 3.8 4.1 12 18 17 3.5 2.3 0.4 7.6 1.7 7.9 7 2.3 5.6 15 2.8 0 9.9 4.3;
28 4.3 25 25 11 23 17 27 19 26 2.4 22 21 25 21 23 9.8 27 11 10 7.6 27 17 20 9.9 0 19;
9.8 17 4.9 5 16 5 13 9.2 0.5 8.1 19 35 34 6.3 1.8 4.4 14 9.5 14 23 12 7 17 1.2 4.3 19 0
];
populationSize = 10; % Population size for GA
maxGenerations = 100
; % Number of generations for GA
initialTemperature = 100; % Initial temperature for SA
coolingRate = 0.9; % Cooling rate for SA
mutationRate = 2; % Maximum number of iterations for SA
[bestTour, bestCost] = hybridTSP(distMatrix, populationSize, maxGenerations, initialTemperature, coolingRate, mutationRate);
disp('Best Tour:');
Best Tour:
disp(bestTour);
1 8 10 22 14 4 3 16 25 7 20 2 26 11 17 19 5 23 21 9 27 24 15 6 18 12 13
disp(['Best Cost: ', num2str(bestCost)]);
Best Cost: 140.7
function [bestTour, bestCost] = hybridTSP(distMatrix, populationSize, maxGenerations, initialTemperature, coolingRate, mutationRate)
numCities = size(distMatrix, 1);
% Generate initial tour using the nearest neighbor heuristic
initialTour = nearestNeighbor(distMatrix);
currentTour = initialTour;
bestTour = initialTour;
currentCost = calculateTourCost(currentTour, distMatrix);
bestCost = currentCost;
for generation = 1:maxGenerations
temperature = initialTemperature / (1 + coolingRate * generation);
% Apply Genetic Algorithm
population = generatePopulation(populationSize, numCities);
for i = 1:populationSize
population(i, :) = mutate(population(i, :), mutationRate);
end
[population, costs] = evaluatePopulation(population, distMatrix);
% Apply Simulated Annealing
for i = 1:populationSize
newTour = simulatedAnnealing(population(i, :), currentCost, temperature, distMatrix);
newCost = calculateTourCost(newTour, distMatrix);
if newCost < currentCost || rand() < exp((currentCost - newCost) / temperature)
currentTour = newTour;
currentCost = newCost;
if newCost < bestCost
bestTour = currentTour;
bestCost = newCost;
end
end
end
end
end
function tour = nearestNeighbor(distMatrix)
numCities = size(distMatrix, 1);
tour = zeros(1, numCities);
unvisited = 1:numCities;
currentCity = randi(numCities);
tour(1) = currentCity;
unvisited(unvisited == currentCity) = [];
for i = 2:numCities
nearestCity = unvisited(1);
minDistance = distMatrix(currentCity, nearestCity);
for j = 2:length(unvisited)
city = unvisited(j);
distance = distMatrix(currentCity, city);
if distance < minDistance
nearestCity = city;
minDistance = distance;
end
end
tour(i) = nearestCity;
currentCity = nearestCity;
unvisited(unvisited == nearestCity) = [];
end
end
function cost = calculateTourCost(tour, distMatrix)
numCities = length(tour);
cost = 0;
for i = 1:numCities-1
cost = cost + distMatrix(tour(i), tour(i+1));
end
cost = cost + distMatrix(tour(end), tour(1)); % Return to the starting city
end
function population = generatePopulation(populationSize, numCities)
population = zeros(populationSize, numCities);
for i = 1:populationSize
population(i, :) = randperm(numCities);
end
end
function mutatedTour = mutate(tour, mutationRate)
numCities = length(tour);
if rand() < mutationRate
% Swap two random cities
r1 = randi(numCities);
r2 = randi(numCities);
temp = tour(r1);
tour(r1) = tour(r2);
tour(r2) = temp;
end
mutatedTour = tour;
end
function [population, costs] = evaluatePopulation(population, distMatrix)
populationSize = size(population, 1);
costs = zeros(1, populationSize);
for i = 1:populationSize
costs(i) = calculateTourCost(population(i, :), distMatrix);
end
[~, idx] = sort(costs);
population = population(idx, :);
costs = costs(idx);
end
function newTour = simulatedAnnealing(tour, currentCost, temperature, distMatrix)
numCities = length(tour);
newTour = tour;
% Perform 2-opt swap
i = randi(numCities);
j = randi(numCities);
if i > j
temp = i;
i = j;
j = temp;
end
while i < j
temp = newTour(i);
newTour(i) = newTour(j);
newTour(j) = temp;
i = i + 1;
j = j - 1;
end
newCost = calculateTourCost(newTour, distMatrix);
if newCost < currentCost || rand() < exp((currentCost - newCost) / temperature)
currentCost = newCost;
else
% Revert the change
while i < j
temp = newTour(i);
newTour(i) = newTour(j);
newTour(j) = temp;
i = i + 1;
j = j - 1;
end
end
end

采纳的回答

Torsten
Torsten 2023-9-28
编辑:Torsten 2023-9-28
Is this an attempt to code the Travelling Salesman Problem ?
If yes: it doesn't matter where the tour starts and ends since it is circular.
%% Travelling Salesman Problem
% Adapted from the TSP Example, Matlab Optimization Toolbox (https://mathworks.com/help/optim/ug/travelling-salesman-problem.html)
% by Santhanakrishnan Narayanan (n.santhanakrishnan@gmail.com)
% Use this code to solve both symmetrical and asymmetrical TSPs based on binary integer programming.
% Required inputs: Distance matrix file
% Place the file in the same folder as the script
% Enter the file name along with extension like .csv/.xls
% The matrix file should be a square matrix
% Distance between (i,i) should be zero. Also the values for non-existing routes should be zero.
% Copyright 2014 The MathWorks, Inc.
%reading distanceMatrix from csv file
%distanceMatrixFile = input('Enter name of the file containing distance matrix (include extension like .csv/.xls): ','s');
%distanceMatrix = readmatrix(distanceMatrixFile);
%distanceMatrix = distanceMatrix(:,2:end);
distanceMatrix = [0 25 4.2 4 23 6 23 1.4 9.5 2.3 27 26 28 2.5 8 6.3 22 5.4 22 31 20 1.8 25 7.8 5.7 28 9.8;
25 0 24 23 12 21 13 25 17 24 6.8 18 16 23 18 20 10 25 11 5.7 5.4 25 18 18 7.6 4.3 17;
4.2 24 0 0.2 20 4.7 17 3.1 4.8 3.9 25 30 39 2 4.3 2.6 20 8.4 20 29 18 2.7 23 4 3.1 25 4.9;
4 23 0.2 0 20 4.8 17 2.7 4.9 3.5 25 30 39 1.6 4.4 2.8 20 7.7 20 29 18 2.3 23 4.1 3.2 25 5;
23 12 20 20 0 20 24 24 16 23 9.1 30 28 23 17 21 1.9 24 1.7 17 7.7 25 6 16 9.1 11 16;
6 21 4.7 4.8 20 0 18 5.1 5.2 3.9 22 38 37 3.4 3.2 1.6 17 5 21 26 15 5.5 21 3.7 1 23 5;
23 13 17 17 24 18 0 22 12 21 19 18 17 19 14 17 23 22 23 7 18 22 30 14 0.4 17 13;
1.4 25 3.1 2.7 24 5.1 22 0 9.7 0.5 26 27 29 1.5 7 5.4 21 4.7 25 30 19 0.8 24 7.6 4.8 27 9.2;
9.5 17 4.8 4.9 16 5.2 12 9.7 0 8.2 19 35 33 6.4 1.9 4.6 14 9.5 14 23 12 9.7 17 1.1 3.8 19 0.5;
2.3 24 3.9 3.5 23 3.9 21 0.5 8.2 0 25 27 40 2 6.3 4.6 20 4.7 25 29 18 1.3 24 6.8 4.1 26 8.1;
27 6.8 25 25 9.1 22 19 26 19 25 0 25 23 25 20 22 7.5 27 7.9 12 10 27 15 19 12 2.4 19;
26 18 30 30 30 38 18 27 35 27 25 0 2 28 36 38 28 29 28 12 23 27 36 36 18 22 35;
28 16 39 39 28 37 17 29 33 40 23 2 0 30 35 37 27 31 27 11 22 29 35 35 17 21 34;
2.5 23 2 1.6 23 3.4 19 1.5 6.4 2 25 28 30 0 5.8 4 20 6.1 24 29 18 0.7 23 5.3 3.5 25 6.3 ;
8 18 4.3 4.4 17 3.2 14 7 1.9 6.3 20 36 35 5.8 0 2.7 15 7.4 16 24 13 7.8 18 0.9 2.3 21 1.8;
6.3 20 2.6 2.8 21 1.6 17 5.4 4.6 4.6 22 38 37 4 2.7 0 17 5.7 18 26 15 4.7 20 3.5 0.4 23 4.4;
22 10 20 20 1.9 17 23 21 14 20 7.5 28 27 20 15 17 0 31 1.2 16 6.1 22 7.8 15 7.6 9.8 14;
5.4 25 8.4 7.7 24 5 22 4.7 9.5 4.7 27 29 31 6.1 7.4 5.7 31 0 24 31 20 5.4 29 7.9 1.7 27 9.5;
22 11 20 20 1.7 21 23 25 14 25 7.9 28 27 24 16 18 1.2 24 0 16 6.5 25 7.3 15 7.9 11 14;
31 5.7 29 29 17 26 7 30 23 29 12 12 11 29 24 26 16 31 16 0 11 31 23 23 7 10 23 ;
20 5.4 18 18 7.7 15 18 19 12 18 10 23 22 18 13 15 6.1 20 6.5 11 0 20 14 13 2.3 7.6 12;
1.8 25 2.7 2.3 25 5.5 22 0.8 9.7 1.3 27 27 29 0.7 7.8 4.7 22 5.4 25 31 20 0 25 6 5.6 27 7;
25 18 23 23 6 21 30 24 17 24 15 36 35 23 18 20 7.8 29 7.3 23 14 25 0 18 15 17 17;
7.8 18 4 4.1 16 3.7 14 7.6 1.1 6.8 19 36 35 5.3 0.9 3.5 15 7.9 15 23 13 6 18 0 2.8 20 1.2;
5.7 7.6 3.1 3.2 9.1 1 0.4 4.8 3.8 4.1 12 18 17 3.5 2.3 0.4 7.6 1.7 7.9 7 2.3 5.6 15 2.8 0 9.9 4.3;
28 4.3 25 25 11 23 17 27 19 26 2.4 22 21 25 21 23 9.8 27 11 10 7.6 27 17 20 9.9 0 19;
9.8 17 4.9 5 16 5 13 9.2 0.5 8.1 19 35 34 6.3 1.8 4.4 14 9.5 14 23 12 7 17 1.2 4.3 19 0
];
%creating city pairs and converting distance square matrix to distance
%column vector
fprintf('Creating city pairs\n');
Creating city pairs
numberOfCities = size(distanceMatrix,1); %number of cities
c=1;
for count = 1:numberOfCities:(numberOfCities*numberOfCities)
cityPairs(count:numberOfCities*c, 1) = c;
cityPairs(count:numberOfCities*c, 2) = 1:numberOfCities;
distanceVector(count:numberOfCities*c, 1) = distanceMatrix(c,:)';
c=c+1;
end
lengthDistanceVector = length(distanceVector);
%% Equality Constraints
fprintf('Creating equality constraints\n');
Creating equality constraints
%Number of trips = number of cityPairs
Aeq = spones(1:length(cityPairs));
beq = numberOfCities;
%Number of trips to a city = 1 and from a city = 1
Aeq = [Aeq;spalloc(2*numberOfCities,length(cityPairs),2*numberOfCities*(numberOfCities+numberOfCities-1))]; %allocate a sparse matrix to preallocate memory for the equality constraints;
c=1;
for count = 1:2:((2*numberOfCities)-1)
columnSum = sparse(cityPairs(:,2)==c);
Aeq(count+1,:) = columnSum'; % include in the constraint matrix
rowSum = cityPairs(:,1)==c;
Aeq(count+2,:) = rowSum';
c=c+1;
end
beq = [beq; ones(2*numberOfCities,1)];
%Non-existing routes
nonExists = sparse(distanceVector == 0);
Aeq(2*c,:) = nonExists';
beq = [beq; 0];
%% Binary Bounds
%Setting the decision variables as binary variables
intcon = 1:lengthDistanceVector;
lb = zeros(lengthDistanceVector,1);
ub = ones(lengthDistanceVector,1);
%% Optimize Using intlinprog
fprintf('Solving the problem\n');
Solving the problem
opts = optimoptions('intlinprog','CutGeneration','Advanced','NodeSelection','mininfeas','Display','off');
[decisionVariables,optimumCost,exitflag,output] = intlinprog(distanceVector,intcon,[],[],Aeq,beq,lb,ub,opts);
%% Subtour Detection
tours = detectSubtours(decisionVariables,cityPairs);
numberOfTours = length(tours);
fprintf('Number of subtours: %d\n',numberOfTours);
Number of subtours: 13
%% Subtour Constraints
A = spalloc(0,lengthDistanceVector,0); % creating sparse inequality constraint matrix
b = [];
while numberOfTours > 1 % repeat until there is just one subtour
b = [b;zeros(numberOfTours,1)]; % entering inequality constraints RHS
A = [A;spalloc(numberOfTours,lengthDistanceVector,numberOfCities)]; % entering inequality constraints LHS
for count = 1:numberOfTours
inequalityConstraintNumber = size(A,1)+1;
subTourId = tours{count}; % Extracting subtour one by one
% adding subtour constraints (inequality constraints)
subTourPairs = nchoosek(1:length(subTourId),2);
for jj = 1:size(subTourPairs,1) % Finding variables associated with the current sub tour
subTourVariable = (sum(cityPairs==subTourId(subTourPairs(jj,1)),2)) & ...
(sum(cityPairs==subTourId(subTourPairs(jj,2)),2));
A(inequalityConstraintNumber,subTourVariable) = 1;
end
b(inequalityConstraintNumber) = length(subTourId)-1; % reducing number of trips allowed by One Ex., A-B-A: 2 -> 1
end
% Optimize again
fprintf('\nsolving the problem again eliminating subtours\n');
[decisionVariables,optimumCost,exitflag,output] = intlinprog(distanceVector,intcon,A,b,Aeq,beq,lb,ub,opts);
% Check for subtours again
fprintf('Checking again for subtours\n');
tours = detectSubtours(decisionVariables,cityPairs);
numberOfTours = length(tours);
fprintf('Number of subtours: %d\n',numberOfTours);
end
solving the problem again eliminating subtours
Checking again for subtours
Number of subtours: 7
solving the problem again eliminating subtours
Checking again for subtours
Number of subtours: 7
solving the problem again eliminating subtours
Checking again for subtours
Number of subtours: 2
solving the problem again eliminating subtours
Checking again for subtours
Number of subtours: 3
solving the problem again eliminating subtours
Checking again for subtours
Number of subtours: 1
%% Solution Quality
%smaller the value better the solution
fprintf('\nSolution Quality: %f (lesser the better)\n',output.absolutegap);
Solution Quality: 0.000000 (lesser the better)
fprintf('Optimized tour route:');
Optimized tour route:
celldisp(tours);
tours{1} = 8 10 18 25 7 13 12 20 2 26 11 19 23 5 17 21 27 9 24 15 6 16 3 4 14 22 1
fprintf('Note: The numbers correspond to order of cities in the input file\n');
Note: The numbers correspond to order of cities in the input file
fprintf('Total distance of the optimal route: %d\n', optimumCost);
Total distance of the optimal route: 1.075000e+02
function subTours = detectSubtours(x,idxs)
% Returns a cell array of subtours. The first subtour is the first row of x, etc.
x(x<0.0001)=0;
r = find(x); % indices of the trips that exist in the solution
substuff = idxs(r,:); % the collection of node pairs in the solution
unvisitedSubToursSubTours = ones(length(r),1); % keep track of places not yet visitedSubTours
curr = 1; % subtour we are evaluating
startour = find(unvisitedSubToursSubTours,1); % first unvisitedSubToursSubTours trip
while ~isempty(startour)
home = substuff(startour,1); % starting point of subtour
nextpt = substuff(startour,2); % next point of tour
visitedSubTours = nextpt; unvisitedSubToursSubTours(startour) = 0; % update unvisitedSubToursSubTours points
while nextpt ~= home
% Find the other trips that starts at nextpt
[srow,scol] = find(substuff == nextpt);
% Find just the new trip
trow = srow(srow ~= startour);
scol = 3-scol(trow == srow); % turn 1 into 2 and 2 into 1
startour = trow; % the new place on the subtour
nextpt = substuff(startour,scol); % the point not where we came from
visitedSubTours = [visitedSubTours,nextpt]; % update nodes on the subtour
unvisitedSubToursSubTours(startour) = 0; % update unvisitedSubToursSubTours
end
subTours{curr} = visitedSubTours; % store in cell array
curr = curr + 1; % next subtour
startour = find(unvisitedSubToursSubTours,1); % first unvisitedSubToursSubTours trip
end
end
  10 个评论
Torsten
Torsten 2023-9-30
Did you look at the result from "my" code and the cost for the tour
8 10 18 25 7 13 12 20 2 26 11 19 23 5 17 21 27 9 24 15 6 16 3 4 14 22 1 8
?
The cost of this tour is 107.5 .

请先登录,再进行评论。

更多回答(1 个)

John D'Errico
John D'Errico 2023-9-28
Your problem is, you want to force the code to return a tour that starts at point 1, and ends there. And that is where you are WRONG.
All you need to do is find the order of points 2 through 27 on that tour. You already know the start and end points are point number 1.

类别

Help CenterFile Exchange 中查找有关 Solver Outputs and Iterative Display 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by