Solving First order ODEs simultaneously

3 次查看(过去 30 天)
Hello, needed help figuring out why I cannot obtain a solution. I'm sure this is a solvable solution however I keep getting a warning saying no solution is found. Is there any mistake I'm making in the code?
Everything is a constant except E, Sr(t) & Er(t).
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
Unrecognized function or variable 'Ea'.
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
odes = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[SrSol(t),ErSol(t)] = dsolve(odes,conds)
  4 个评论
Walter Roberson
Walter Roberson 2023-9-28
Ea = 123; %just to have SOME value
k1 = 42; %just to have SOME value
k2 = 13; %just to have SOME value
krev1 = 48; %just to have SOME value
Sa = 5; %just to have SOME value
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
eqns = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[eqs,vars] = reduceDifferentialOrder(eqns, [Sr(t), Er(t)])
eqs = 
vars = 
[M,F] = massMatrixForm(eqs,vars)
M = 
F = 
f = M\F
f = 
odefun = odeFunction(f,vars)
odefun = function_handle with value:
@(t,in2)[in2(2,:).*4.8e+1-in2(1,:).*5.166e+3+in2(2,:).*in2(1,:).*4.2e+1;in2(2,:).*-6.1e+1+in2(1,:).*5.166e+3-in2(2,:).*in2(1,:).*4.2e+1]
InitConditions = double(rhs(conds)) %watch out for order though!
InitConditions = 2×1
5 0
[T, Y] = ode45(odefun, [0 0.01], InitConditions);
subplot(2,1,1); plot(T, Y(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(T, Y(:,2)); title(string(vars(2)))
%that almost looks like the initial conditions are reversed.
%what happens if we try reversing the conditions?
[Tr, Yr] = ode45(odefun, [0 0.01], flipud(InitConditions));
figure
subplot(2,1,1); plot(Tr, Yr(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(Tr, Yr(:,2)); title(string(vars(2)))

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2023-9-28
移动:Torsten 2023-9-28
I'm quite sure there is no analytical solution for your system of ODEs since the right-hand sides are nonlinear in the unknown functions (term Er(t)*Sr(t)).
  7 个评论
Valerie
Valerie 2023-9-29
@Sam Chak I rage quit mathematica this week and is how I eneded up on MATLAB lol but thank you!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by