Here, we take the advantage of matrix operations and the fact that the data you have is stored uniformly and frequency values are unique -
excel_file = 'AVR_water.xlsx';
names = sheetnames(excel_file);
n = numel(names);
%Preallocation
C = cell(1,n);
for k=1:n
C{k} = readmatrix(excel_file,'Sheet', names(k));
end
%Concatenate the data into a 3D array
%Each page corresponds to the data of each sheet
C = cat(3,C{:});
%As epsilon values are stored in the 2nd column for each sheet
%use indexing to data the corresponding mean and standard deviation
m = reshape(mean(C(:,2,:), 3),[],1);
s = reshape(std(C(:,2,:), [], 3),[],1);
T_result = table(C(:,1,1), m, s, 'VariableNames', {'Frequency (MHz)', 'Average Permittivity ε1', 'Type A Uncertainty'});
disp(T_result)
Frequency (MHz) Average Permittivity ε1 Type A Uncertainty
_______________ _______________________ __________________
100 79.61 0.024389
129.5 79.63 0.022826
159 79.648 0.021834
188.5 79.663 0.021184
218 79.676 0.021042
247.5 79.685 0.02118
277 79.691 0.021505
306.5 79.694 0.021734
336 79.692 0.021998
365.5 79.688 0.022332
395 79.682 0.022483
424.5 79.673 0.022603
454 79.663 0.022812
483.5 79.654 0.022614
513 79.644 0.022374
542.5 79.638 0.022081
572 79.632 0.021906
601.5 79.624 0.021851
631 79.617 0.021843
660.5 79.609 0.021835
690 79.601 0.022066
719.5 79.593 0.022461
749 79.584 0.022837
778.5 79.573 0.022477
808 79.561 0.022099
837.5 79.548 0.021903
867 79.535 0.021507
896.5 79.522 0.021069
926 79.507 0.020423
955.5 79.492 0.019999
985 79.478 0.019766
1014.5 79.464 0.019733
1044 79.451 0.020235
1073.5 79.437 0.021258
1103 79.425 0.022691
1132.5 79.412 0.024157
1162 79.398 0.025596
1191.5 79.383 0.026408
1221 79.365 0.026496
1250.5 79.347 0.026514
1280 79.329 0.027142
1309.5 79.312 0.028405
1339 79.296 0.030218
1368.5 79.28 0.032336
1398 79.264 0.034877
1427.5 79.249 0.037448
1457 79.234 0.039882
1486.5 79.216 0.041679
1516 79.197 0.042638
1545.5 79.176 0.043047
1575 79.154 0.042762
1604.5 79.131 0.041965
1634 79.106 0.040603
1663.5 79.081 0.03894
1693 79.055 0.037541
1722.5 79.029 0.036048
1752 79.002 0.034131
1781.5 78.974 0.0317
1811 78.944 0.0286
1840.5 78.913 0.025323
1870 78.88 0.02192
1899.5 78.847 0.018856
1929 78.815 0.016974
1958.5 78.784 0.016429
1988 78.755 0.01672
2017.5 78.726 0.01748
2047 78.698 0.01821
2076.5 78.668 0.018779
2106 78.637 0.019163
2135.5 78.605 0.01965
2165 78.573 0.020164
2194.5 78.541 0.02063
2224 78.509 0.021072
2253.5 78.477 0.021257
2283 78.446 0.021274
2312.5 78.415 0.020951
2342 78.384 0.020398
2371.5 78.354 0.020023
2401 78.323 0.020013
2430.5 78.291 0.020278
2460 78.259 0.020768
2489.5 78.225 0.021134
2519 78.192 0.021124
2548.5 78.159 0.020905
2578 78.127 0.020436
2607.5 78.094 0.019995
2637 78.063 0.020053
2666.5 78.032 0.021042
2696 78.001 0.022976
2725.5 77.97 0.025631
2755 77.938 0.028584
2784.5 77.906 0.031737
2814 77.872 0.034742
2843.5 77.838 0.037369
2873 77.802 0.039589
2902.5 77.766 0.041409
2932 77.728 0.04247
2961.5 77.689 0.04319
2991 77.649 0.043624
3020.5 77.607 0.043673
3050 77.566 0.043523
3079.5 77.524 0.043036
3109 77.481 0.042229
3138.5 77.436 0.040784
3168 77.39 0.039079
3197.5 77.344 0.036695
3227 77.297 0.034054
3256.5 77.25 0.031236
3286 77.201 0.028322
3315.5 77.153 0.02535
3345 77.105 0.022383
3374.5 77.056 0.019509
3404 77.007 0.016883
3433.5 76.958 0.014527
3463 76.909 0.012639
3492.5 76.86 0.011192
3522 76.811 0.010686
3551.5 76.761 0.011072
3581 76.71 0.01203
3610.5 76.66 0.013586
3640 76.609 0.015378
3669.5 76.558 0.017338
3699 76.507 0.019276
3728.5 76.456 0.021098
3758 76.405 0.022533
3787.5 76.354 0.023732
3817 76.302 0.024702
3846.5 76.25 0.025133
3876 76.199 0.025098
3905.5 76.148 0.024495
3935 76.099 0.023394
3964.5 76.049 0.021948
3994 76 0.019913
4023.5 75.95 0.017884
4053 75.9 0.015803
4082.5 75.851 0.013919
4112 75.802 0.012238
4141.5 75.753 0.010965
4171 75.704 0.010089
4200.5 75.654 0.0097361
4230 75.603 0.0095495
4259.5 75.552 0.0099234
4289 75.5 0.010601
4318.5 75.448 0.01149
4348 75.396 0.012524
4377.5 75.342 0.013698
4407 75.287 0.015062
4436.5 75.233 0.016126
4466 75.177 0.016857
4495.5 75.121 0.017718
4525 75.064 0.017963
4554.5 75.007 0.018579
4584 74.95 0.018888
4613.5 74.892 0.018711
4643 74.832 0.01821
4672.5 74.773 0.017256
4702 74.712 0.016134
4731.5 74.651 0.014983
4761 74.591 0.013879
4790.5 74.53 0.012806
4820 74.47 0.012074
4849.5 74.409 0.011747
4879 74.347 0.011989
4908.5 74.286 0.012402
4938 74.224 0.012829
4967.5 74.163 0.013207
4997 74.101 0.013287
5026.5 74.039 0.013147
5056 73.976 0.01273
5085.5 73.913 0.012181
5115 73.849 0.01147
5144.5 73.785 0.010762
5174 73.72 0.010091
5203.5 73.656 0.00972
5233 73.591 0.0096712
5262.5 73.527 0.0099922
5292 73.461 0.010139
5321.5 73.396 0.010694
5351 73.33 0.011303
5380.5 73.265 0.011808
5410 73.201 0.01262
5439.5 73.138 0.011961
5469 73.074 0.011778
5498.5 73.01 0.011713
5528 72.945 0.011594
5557.5 72.88 0.011347
5587 72.815 0.010928
5616.5 72.75 0.010505
5646 72.684 0.010128
5675.5 72.619 0.0095782
5705 72.554 0.0090437
5734.5 72.488 0.0085925
5764 72.421 0.0081432
5793.5 72.353 0.0077805
5823 72.284 0.0075574
5852.5 72.214 0.006979
5882 72.146 0.0068274
5911.5 72.076 0.0067365
5941 72.006 0.0066613
5970.5 71.936 0.0067039
6000 71.865 0.0069214
However, in case the data you have is not uniformly stored or is not unique, we can utilize the functions - splitapply or accumarray