For Loop for Symbolic

2 次查看(过去 30 天)
syms lambda
syms x
syms i
R=4;
rho_L= 2702;
rho_r= 5700;
E_L= 70e+9;
E_r= 200e+9;
nu=3;
A=zeros(R+1,R+1);
for r=0:R
for m=0:R
M1= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M2= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M3= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+1-i))*((factorial(r+1))/(factorial(i)*nu^(r-i+2))),i,0,r+1));
M4= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+1-i))*((factorial(r+1))/(factorial(i)*nu^(r-i+2))),i,0,r+1));
M5= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+2-i))*((factorial(r+2))/(factorial(i)*nu^(r-i+3))),i,0,r+2));
M6= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+2-i))*((factorial(r+2))/(factorial(i)*nu^(r-i+3))),i,0,r+2));
M7= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+3-i))*((factorial(r+3))/(factorial(i)*nu^(r-i+4))),i,0,r+3));
M8= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+3-i))*((factorial(r+3))/(factorial(i)*nu^(r-i+4))),i,0,r+3));
M9= ((E_L*nu)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M10= ((E_r*nu)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M11= ((E_L*nu^2)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M12= ((E_r*nu^2)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M13= ((E_L*exp(nu))/(exp(nu)-1))*(symsum(((-1)^(r+m-i))*((factorial(r+m))/(factorial(i)*nu^(r+m-i+1))),i,0,r));
M14= ((E_r*exp(nu))/(exp(nu)-1))*(symsum(((-1)^(r+m-i))*((factorial(r+m))/(factorial(i)*nu^(r+m-i+1))),i,0,r));
J1= ((rho_L/(r+1))*(1+(1/(exp(nu)-1))))-((M1-M2)*exp(nu))-((rho_r/(exp(nu)-1))*(1/(r+1)));
J2= ((rho_L/(r+2))*(1+(1/(exp(nu)-1))))-((M3-M4)*exp(nu))-((rho_r/(exp(nu)-1))*(1/(r+2)));
I1=(-M9*exp(x*nu)*(x^r))+(M10*exp(x*nu)*(x^r));
I2=(M11*exp(x*nu)*(x^r))+(M12*exp(x*nu)*(x^r));
I3=((rho_L*(x^(r+1)))/(r+1))-(M1*exp(x*nu)*(x^r))+((rho_L*(x^(r+1)))/((r+1)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+1))/(r+1)))+((M2*exp(x*nu)*(x^r)));
I4=((rho_L*(x^(r+2)))/(r+2))-(M1*exp(x*nu)*(x^(r+1)))+((rho_L*(x^(r+2)))/((r+2)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+2))/(r+2)))+((M2*exp(x*nu)*(x^(r+1))));
I5=((rho_L*(x^(r+3)))/(r+3))-(M1*exp(x*nu)*(x^(r+2)))+((rho_L*(x^(r+3)))/((r+3)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+3))/(r+3)))+((M2*exp(x*nu)*(x^(r+2))));
I6=((rho_L*(x^(r+4)))/(r+4))-(M1*exp(x*nu)*(x^(r+3)))+((rho_L*(x^(r+4)))/((r+4)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+4))/(r+4)))+((M2*exp(x*nu)*(x^(r+3))));
H1=(I1*(r+3)+I2*x-((lambda^2)/6)*I3+((lambda^2)/2)*I4*(x^2)-((lambda^2)/2)*I5*x-I6)*(x^m);
H1_int= int(H1,x,0,1);
H1_int= vpa(H1_int);
H2 = ((J1*(lambda^2))/(6*(m+4)))-((J2*(lambda^2))/(2*(m+3)));
H2=vpa(H2);
G= (E_L/(r+m+1))-M13+((E_L/(exp(nu)-1))*(1/(r+m+1)))+M14;
G=vpa(G);
A(m,r)=H1_int+H2+G;
end
end
Unable to perform assignment because value of type 'sym' is not convertible to 'double'.

Caused by:
Error using symengine
Unable to convert expression containing symbolic variables into double array. Apply 'subs' function first to substitute values for variables.
A
I have three symbolic terms since I want equations interms of lambda and x. The value of x inserted when I get I's values after r values and m values. I am creating a matrix A with equations having lambda then I take determinant of it to get an equation in terms of lambda and I will use that equation to get value of lambda. I am also sharng what I mean by matrix A. The matrix will have elements like following ;
A11=583418350034.71711450099633761995 - 404.2522486820071715581475695452*lambda^2; %r=0 m=0
A12=342955100491.05339629025357860931 - 236.16385981512705886473948261464*lambda^2; %r=1 m=0
A13=265052784655.08577750712854323127 - 168.18177781842519452660605420978*lambda^2;
A14=203322762437.79122083006315019118 - 137.99080394103775945839083607247*lambda^2;
A15=179379868828.76827703612092258873 - 108.01397559315213169193183004632*lambda^2;
A21=370495028698.81627008913055964828 - 272.77098597891027337922111086527*lambda^2;
A22=228100010500.85073852655079716474 - 172.36591762980006298921802813592*lambda^2;
A23=174909572535.14489241114607164103 - 125.31310187054420562351504054388*lambda^2;
A24=130525707221.65027901348657766572 - 103.54975334547425216012368068556*lambda^2;
A25=110410873567.05769598554052019297 - 81.283292521249163213494102067785*lambda^2;
A31=318836918206.42606727416420657554 - 205.00780517033281356081424897212*lambda^2;
A32=228116511483.27211950393951440909 - 135.3394493480940806583611823317*lambda^2;
A33=206373496726.45624130029358463062 - 99.811322967330165385124898047064*lambda^2;
A34=183606236766.48017821939715890692 - 82.968801004892704989067098085304*lambda^2;
A35=188218588289.44473276912635161394 - 65.334491840422903824342987190786*lambda^2;
A41=249285839982.9324301749480792828 - 163.76728864719879912159069265404*lambda^2;
A42=152346533827.00642443852525232634 - 111.25013657653381685476087220797*lambda^2;
A43=95652277632.223435252212147492575 - 82.914382160944203068253893669008*lambda^2;
A44=33728441196.492275381613993607189 - 69.262645398935919927356866449461*lambda^2;
A45=-54.707899833285924851812473702749*lambda^2 - 30313230834.758141502064257607773;
A51=238011371413.10690304954757739067 - 136.11115268606901224149243477624*lambda^2;
A52=203108325234.9890834260110228119 - 94.364231425385059797811493443391*lambda^2;
A53=248481839194.19255791356538082301 - 70.901034522277689237116974329652*lambda^2;
A54=322167870570.16045465551166213521 - 59.469506840450354534300476840716*lambda^2;
A55=489611884237.36508541953085427943 - 47.10375093128415795710589282516*lambda^2;
and Matrix A will be;
[A11 A12 A13 A14 A15;
A21 A22 A23 A24 A25;
A31 A32 A33 A34 A35;
A41 A42 A43 A44 A45;
A51 A52 A53 A54 A55];
The I take determinant of it once I have matrix A. I want to run for loop since changing r values will give columns values and changing m values will give row values. but I am having the erros
Error in Intgration (line 71)
A(m,r)=H1_int+H2+G;
Caused by:
Error using symengine
Unable to convert expression containing symbolic variables into double array. Apply 'subs' function first to substitute values
for variables.
  3 个评论
Dyuman Joshi
Dyuman Joshi 2023-10-25
Part #2
Also, you can parameterize the expression of the variables using symsum() instead of repeatively calculating them each iteration.
Placing independent operations outside for loops is a good technique for improving performance.
syms r k
rho = [rho_L rho_r];
%for M1 to M8
%provide the value of k accordingly
f1(k,r) = (rho(2-rem(k,2))/(exp(nu)-1))*(symsum(((-1)^(r+k-i))*((factorial(r+k))/(factorial(i)*nu^(r-i+k+1))),i,0,r+k));
%for M9 to M12
%same common expression, multiply the extra term accordingly
f2(r) = (1/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
You can use the above examples to parameterize for the other variables.
Another thing, you can directly add H1_int, H2 and G and assign the value to A(m,r), then use vpa() on A outside of the loop.
Syed Abdul Rafay
Syed Abdul Rafay 2023-10-26
I will try it. Actually I tried a lot of different approaches but it was not giving me int values. I will try your approach to see if it works.

请先登录,再进行评论。

采纳的回答

Star Strider
Star Strider 2023-10-25
I am not exactly certain what the problem is, however creating A as a sym matrix and re-defining the loop indices so that they are valid MATLAB indices works and does not throw any errors —
syms lambda
syms x
syms i
R=4;
rho_L= 2702;
rho_r= 5700;
E_L= 70e+9;
E_r= 200e+9;
nu=3;
% A=zeros(R+1,R+1);
A = sym('A',[R+1 R+1]);
for ri=1:R+1
r = ri-1;
for mi=1:R+1
m = mi-1;
M1= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M2= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M3= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+1-i))*((factorial(r+1))/(factorial(i)*nu^(r-i+2))),i,0,r+1));
M4= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+1-i))*((factorial(r+1))/(factorial(i)*nu^(r-i+2))),i,0,r+1));
M5= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+2-i))*((factorial(r+2))/(factorial(i)*nu^(r-i+3))),i,0,r+2));
M6= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+2-i))*((factorial(r+2))/(factorial(i)*nu^(r-i+3))),i,0,r+2));
M7= (rho_L/(exp(nu)-1))*(symsum(((-1)^(r+3-i))*((factorial(r+3))/(factorial(i)*nu^(r-i+4))),i,0,r+3));
M8= (rho_r/(exp(nu)-1))*(symsum(((-1)^(r+3-i))*((factorial(r+3))/(factorial(i)*nu^(r-i+4))),i,0,r+3));
M9= ((E_L*nu)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M10= ((E_r*nu)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M11= ((E_L*nu^2)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M12= ((E_r*nu^2)/(exp(nu)-1))*(symsum(((-1)^(r-i))*((factorial(r))/(factorial(i)*nu^(r-i+1))),i,0,r));
M13= ((E_L*exp(nu))/(exp(nu)-1))*(symsum(((-1)^(r+m-i))*((factorial(r+m))/(factorial(i)*nu^(r+m-i+1))),i,0,r));
M14= ((E_r*exp(nu))/(exp(nu)-1))*(symsum(((-1)^(r+m-i))*((factorial(r+m))/(factorial(i)*nu^(r+m-i+1))),i,0,r));
J1= ((rho_L/(r+1))*(1+(1/(exp(nu)-1))))-((M1-M2)*exp(nu))-((rho_r/(exp(nu)-1))*(1/(r+1)));
J2= ((rho_L/(r+2))*(1+(1/(exp(nu)-1))))-((M3-M4)*exp(nu))-((rho_r/(exp(nu)-1))*(1/(r+2)));
I1=(-M9*exp(x*nu)*(x^r))+(M10*exp(x*nu)*(x^r));
I2=(M11*exp(x*nu)*(x^r))+(M12*exp(x*nu)*(x^r));
I3=((rho_L*(x^(r+1)))/(r+1))-(M1*exp(x*nu)*(x^r))+((rho_L*(x^(r+1)))/((r+1)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+1))/(r+1)))+((M2*exp(x*nu)*(x^r)));
I4=((rho_L*(x^(r+2)))/(r+2))-(M1*exp(x*nu)*(x^(r+1)))+((rho_L*(x^(r+2)))/((r+2)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+2))/(r+2)))+((M2*exp(x*nu)*(x^(r+1))));
I5=((rho_L*(x^(r+3)))/(r+3))-(M1*exp(x*nu)*(x^(r+2)))+((rho_L*(x^(r+3)))/((r+3)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+3))/(r+3)))+((M2*exp(x*nu)*(x^(r+2))));
I6=((rho_L*(x^(r+4)))/(r+4))-(M1*exp(x*nu)*(x^(r+3)))+((rho_L*(x^(r+4)))/((r+4)*(exp(nu)-1)))-((rho_r/(exp(nu)-1))*((x^(r+4))/(r+4)))+((M2*exp(x*nu)*(x^(r+3))));
H1=(I1*(r+3)+I2*x-((lambda^2)/6)*I3+((lambda^2)/2)*I4*(x^2)-((lambda^2)/2)*I5*x-I6)*(x^m);
H1_int= int(H1,x,0,1);
H1_int= vpa(H1_int);
H2 = ((J1*(lambda^2))/(6*(m+4)))-((J2*(lambda^2))/(2*(m+3)));
H2=vpa(H2);
G= (E_L/(r+m+1))-M13+((E_L/(exp(nu)-1))*(1/(r+m+1)))+M14;
G=vpa(G);
A(mi,ri)=H1_int+H2+G;
end
end
A
A = 
.
  2 个评论
Syed Abdul Rafay
Syed Abdul Rafay 2023-10-26
Thanks for sharing. I see where I had the problem. Thanks for your help.
Star Strider
Star Strider 2023-10-26
My pleasure!
If my Answer helped you solve your problem, please Accept it!
.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 MATLAB 的更多信息

标签

产品


版本

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by