Changing colour of regression line in a scatter plot
8 次查看(过去 30 天)
显示 更早的评论
I am trying to either change the colour of the line in my scatter graph linear regression graph or the colour of the plots to make it easier to read
This is my current code to try and change the line colour to blue except both the line and points stay in red each time?
plot(x, y, 'rx', 'MarkerSize', 2, "MarkerFaceColor","b");
ylabel('Crash Risk');
xlabel('Ln Market Value');
title('How Ln Market Value affects Crash Risk')
6 个评论
Star Strider
2023-12-27
Missing function definitions.
%% Initialization
clear all; close all; clc
%% ======================= Part 1: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('LnMarketVal.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);
% fprintf('Program paused. Press enter to continue.\n');
% pause;
%% =================== Part 2: Gradient descent ===================
fprintf('Running Gradient Descent ...\n')
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
% compute and display initial cost
computeCost(X, y, theta)
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf('Theta found by gradient descent: ');
fprintf('%f %f \n', theta(1), theta(2));
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure
% Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============= Part 3: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...\n')
% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);
% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));
% Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');
% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
.
Dyuman Joshi
2023-12-27
编辑:Dyuman Joshi
2023-12-27
@Danny, Please supply the functions used/called in the script as well.
采纳的回答
Star Strider
2023-12-27
x = (0:99);
y = 3*x + randn(size(x))*25 + 15;
figure
plot(x, y, 'rx', 'MarkerSize', 2, "MarkerFaceColor","b");
ylabel('Crash Risk');
xlabel('Ln Market Value');
title('How Ln Market Value affects Crash Risk')
lr = lsline;
lr.Color = 'b'; % Change Colour To Blue
B = [lr.XData; 1 1].' \ lr.YData.'; % Parameters
m = B(1) % Slope
b = B(2) % Inmtercept
The only argumnent lsline takes is the axis it refers to, so all modifications are made to it after it is plotted.
.
1 个评论
Image Analyst
2023-12-27
How does lsline know what the data is? What if there are lots of things plotted? Or does it require only 1 set of x data and 1 set of y data?
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Descriptive Statistics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!