Plot the periodic function.

29 次查看(过去 30 天)
NIBISHA
NIBISHA 2024-1-1
回答: Ayush 2024-1-1

回答(2 个)

recent works
recent works 2024-1-1
import matplotlib.pyplot as plt
# Define the periodic function
def f(x):
if x % 4 < 2:
return 1/2
else:
return -1/2
# Generate x-axis values
x = range(0, 16)
# Calculate y-axis values
y = [f(i) for i in x]
# Plot the function
plt.plot(x, y)
# Set plot labels and title
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title("Periodic Function")
# Set axis limits
plt.xlim(0, 16)
plt.ylim(-1/2, 1/2)
# Show the plot
plt.grid(True)
plt.show()
Key points:
  • Period: The function repeats every 4 units along the x-axis.
  • Amplitude: The function oscillates between 1/2 and -1/2.
  • Shape: The function has a rectangular shape within each period.
  • Discontinuities: The function has jumps at x = 2 and x = 4, where it changes value abruptly.
  1 个评论
Walter Roberson
Walter Roberson 2024-1-1
This appears to be python code; the stated requirements are that MATLAB code must be used.

请先登录,再进行评论。


Ayush
Ayush 2024-1-1
I understand that you want to get the Laplace Transform of your equation and verify the results through MATLAB code. Here is the MATLAB code for that:
syms t s
% Define one period of the piecewise function using heaviside functions
f_t_period = 0.5 * (heaviside(t) - heaviside(t - 2)) - 0.5 * (heaviside(t - 2) - heaviside(t - 4));
% Define the periodic extension of the function
f_t = f_t_period - subs(f_t_period, t, t - 4);
% Define the period
T = 4;
% Compute the Laplace transform of one period of the function
F_s = (1 - exp(-s*T))^(-1) * int(f_t_period * exp(-s*t), t, 0, T);
% Plot the original piecewise function over multiple periods
num_periods = 3; % Number of periods to plot
t_vals = linspace(0, num_periods*T, 1000); % Define time values for plotting
f_vals = double(subs(f_t, t, mod(t_vals, T))); % Evaluate f(t) at the time values with modulo for periodicity
figure;
subplot(2, 1, 1);
plot(t_vals, f_vals, 'LineWidth', 2);
title('Original Periodic Function f(t)');
xlabel('Time t');
ylabel('f(t)');
axis([0 num_periods*T -1 1]);
grid on;
% Plot the real part of the Laplace transform over a range of s values
% We avoid s = 0 to prevent division by zero
s_vals = linspace(0.01, 10, 200); % Define s values for plotting, starting just above zero
F_vals = double(subs(F_s, s, s_vals)); % Evaluate F(s) at the s values
subplot(2, 1, 2);
plot(s_vals, real(F_vals), 'LineWidth', 2); % Plot only the real part
title('Laplace Transform F(s)');
xlabel('s');
ylabel('Real part of F(s)');
grid on;
Thanks,
Ayush

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by