I have created a code to solve three coupled ODE but unable to plot its nature on the graph as one of the curve is imaginary .

1 次查看(过去 30 天)
clc
clear all
alpha=3.55*10^-3;
sigma=3.7292*10^11;
eta=rand;
TB=3.59*10^8;
delta_t=50*10^-12;
n=1.45;
c=3*10^8;
Q=141.3227*10^-4;
syms t p(t) AL(t) AS(t)
% --- move to here ---
real_part=randn();
imag_part=randn();
complex=exp(-(real_part+1i*imag_part))^2;
f=sqrt((n*Q)/((delta_t)^2)*c)*complex; % <-- this parameter must be defined before ODE
r=sqrt((n*Q)/(c*TB))*complex;
% --- move to here ---
Eq1=diff(AL)==1i*sigma*p(t)*AS(t);
Eq2=diff(AS)==1i*sigma*conj(p(t))*AL(t);
Eq3=(alpha/TB)*diff(p,2)+(alpha-1i)*diff(p)-((1i*TB)/2)*p(t)==eta*AL(t)*conj(AS(t))-1i*f;
[VF,subs]=odeToVectorField(Eq1,Eq2,Eq3);
disp(VF)
disp(subs)
% ftotal=matlabFunction(VF);
ftotal = matlabFunction(VF, 'vars', {'t', 'Y'});
tspan = [0 1].*10^-6;
ic = [0 0 r 0]; % <-- 4 states requires 4 initial values (check the order)
[t,Y] = ode45(ftotal, tspan, ic);
plot(t, Y(:, 1), 'LineWidth', 2, 'DisplayName', 'AS');
hold on;
plot(t, Y(:, 2), 'LineWidth', 2, 'DisplayName', 'AL');
plot(t, Y(:, 3), 'LineWidth', 2, 'DisplayName', 'p');
Warning: Imaginary parts of complex X and/or Y arguments ignored.
xlabel('Time');
ylabel('Solution');
title('Solution of the Coupled ODE System');
grid on;
The plot is not showing its display name and one of the curve is imaginary. I dont know how to plot all three at the same plane.

采纳的回答

Sam Chak
Sam Chak 2024-1-3
You can plot the real part and the imaginary part separately to verify if this meets your requirements.
alpha=3.55*10^-3;
sigma=3.7292*10^11;
eta=rand;
TB=3.59*10^8;
delta_t=50*10^-12;
n=1.45;
c=3*10^8;
Q=141.3227*10^-4;
syms t p(t) AL(t) AS(t)
% --- move to here ---
real_part=randn();
imag_part=randn();
complex=exp(-(real_part+1i*imag_part))^2;
f=sqrt((n*Q)/((delta_t)^2)*c)*complex; % <-- this parameter must be defined before ODE
r=sqrt((n*Q)/(c*TB))*complex;
% --- move to here ---
Eq1=diff(AL)==1i*sigma*p(t)*AS(t);
Eq2=diff(AS)==1i*sigma*conj(p(t))*AL(t);
Eq3=(alpha/TB)*diff(p,2)+(alpha-1i)*diff(p)-((1i*TB)/2)*p(t)==eta*AL(t)*conj(AS(t))-1i*f;
[VF,subs]=odeToVectorField(Eq1,Eq2,Eq3);
disp(VF)
disp(subs)
ftotal = matlabFunction(VF, 'vars', {'t', 'Y'});
tspan = [0 1].*10^-6;
ic = [0 0 r 0]; % <-- 4 states requires 4 initial values (check the order)
[t,Y] = ode45(ftotal, tspan, ic);
subplot(221)
plot(t, Y(:, 1), 'LineWidth', 2, 'DisplayName', 'AS'), grid on, title('AS')
subplot(223)
plot(t, Y(:, 2), 'LineWidth', 2, 'DisplayName', 'AL'), grid on, title('AL')
subplot(222)
plot(t, real(Y(:, 3)), 'LineWidth', 2, 'DisplayName', 'p'), grid on, title('real(p)')
subplot(224)
plot(t, imag(Y(:, 3)), 'LineWidth', 2, 'DisplayName', 'p'), grid on, title('imag(p)')

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by