Plot a direction field whose vectors have the same size

5 次查看(过去 30 天)
I want to plot the direction field of the ODE .
Here is my script.
% Clear previous figures, workspace, and command window
clc; clear; close all;
% Define the symbolic variable and the differential equation
syms y(t)
eqn = -y + exp(-t)*cos(10*t) == diff(y,t);
cond = y(0) == 0;
sol = dsolve(eqn, cond);
fplot(sol, [0, 2])
hold on % freeze axis
% Define the differential equation using a function handle for the
% direction field
dydt = @(t, y) -y + exp(-t) .* cos(10*t);
% Define the range of t and y values for the meshgrid
t = linspace(0, 2, 15); % Adjust it as needed
y = linspace(-0.1, 0.1, 15); % Adjust it as needed
% Create a meshgrid of t and y values
[T, Y] = meshgrid(t, y);
% Compute the direction values using the differential equation
dydt_values = dydt(T, Y);
% Normalize the direction values for better visualization
L = sqrt(1 + dydt_values.^2);
dydt_normalized = dydt_values./L;
% Plot the direction field using quiver
quiver(T, Y, 1./L, dydt_normalized, 0.3);
% Set axis labels and title with LaTeX interpretation
xlabel('t'); ylabel('y');
title('Direction Field for $y'' = -y + e^{-t} \cos(10t)$', 'Interpreter', 'Latex');
% Adjust axis limits and remove the box around the plot
axis tight; box off;
% Show the plot with grid lines and minor grid lines
grid on; grid minor;
% Move axis origin at (0,0)
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
hold off % stop freewing axis
How can one force the vectors to have the same size and have, if possibly, better looking heads?
Thanks a lot!

回答(1 个)

Voss
Voss 2024-1-13
编辑:Voss 2024-1-13
The vectors do have the same size, in terms of the x and y of the axes. However, the vectors with larger vertical component appear longer because the data aspect ratio of the axes is about 1:8 (Y:X), i.e., a unit in the y direction is the same distance on the screen as 8 units in the x direction.
Calculation and original plot:
syms y(t)
eqn = -y + exp(-t)*cos(10*t) == diff(y,t);
cond = y(0) == 0;
sol = dsolve(eqn, cond);
dydt = @(t, y) -y + exp(-t) .* cos(10*t);
t = linspace(0, 2, 15); % Adjust it as needed
y = linspace(-0.1, 0.1, 15); % Adjust it as needed
[T, Y] = meshgrid(t, y);
dydt_values = dydt(T, Y);
% Normalize the direction values for better visualization
L = sqrt(1 + dydt_values.^2);
dydt_normalized = dydt_values./L;
% original Plots
figure
fplot(sol, [0, 2])
hold on
quiver(T, Y, 1./L, dydt_normalized, 0.3);
xlabel('t'); ylabel('y');
title('Direction Field for $y'' = -y + e^{-t} \cos(10t)$', 'Interpreter', 'Latex');
axis tight; box off;
grid on; grid minor;
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
Note the axes' DataAspectRatio:
ax.DataAspectRatio
ans = 1×3
8.2231 1.0000 8.0611
If you want the vectors to all appear the same size on the screen, there are two options:
Option 1: Set the data aspect ratio of the axes to be 1:1, for which you can use axes equal.
% Plots
figure
fplot(sol, [0, 2])
hold on
quiver(T, Y, 1./L, dydt_normalized, 0.3);
xlabel('t'); ylabel('y');
title('Direction Field for $y'' = -y + e^{-t} \cos(10t)$', 'Interpreter', 'Latex');
axis equal; box off;
grid on; grid minor;
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
ax.DataAspectRatio
ans = 1×3
1 1 1
Option 2: Keep the axes' apparent size more-or-less how it was, and scale the vertical component of the vectors by a factor. Here I use a factor of 1/9.7815, which is roughly equal to the axes Y:X aspect ratio it gives; this was found by iteratively varying the factor starting with 1/8.22 until the axes aspect ratio matched the factor, thus ensuring that the arrows are all the same length on the screen.
% Plots
figure
fplot(sol, [0, 2])
hold on
quiver(T, Y, 1./L, dydt_normalized/9.7815, 0.3);
xlabel('t'); ylabel('y');
title('Direction Field for $y'' = -y + e^{-t} \cos(10t)$', 'Interpreter', 'Latex');
axis tight; box off;
grid on; grid minor;
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
ax.DataAspectRatio
ans = 1×3
9.7815 1.0000 9.5888

类别

Help CenterFile Exchange 中查找有关 Line Plots 的更多信息

产品


版本

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by