Questions about the PID controller of an inverted pendulum
17 次查看(过去 30 天)
显示 更早的评论
I need help with this problem I am trying to solve. I have implemented two codes, one for a PD controller and another for a PID controller. The first one works correctly without any issues, but the second one gives me a dimension error. I understand that it is due to the difference in sizes of K.A, K.B, K.C, and K.D. I can't find a way to solve the problem, and I would appreciate it if you could help me. I am sharing my code:
Code for PD close-loop controller:
%% Define the process model
% Define the constants values
M = 0.5; % Mass
g = 9.81; % Acceleration due to gravity
f = 0.25; % Friction coefficient
l = 1; % Length
% Define the operation parameters, force, and torque.
pos_oper = 0; % Operating position
torque_oper = 0; % Operating torque
% Define the structure model for process part
Model.Process.StateEq = @(t,theta,T) [theta(2); g*sin(theta(1)) - f/M*theta(2)+T/M];
Model.Process.OutputEq = @(t,theta,T) theta(1);
Process_Order = 2;
%% Linear PD controller
% Hand-tuned PD controller (with derivative noise filter):
s = tf('s');
Kp = 9.71; % Proportional gain
Kd = 3.03; % Derivative gain
filter = 20; % Derivative noise filter
F_transfer = Kp+Kd*s/(s/filter + 1);
K = ss(F_transfer);
Control_Order = size(K.A,1);
%% Define the control model
% Define the model - control - stateEq
Model.Control.StateEq = @(t,theta,y) K.A*theta+K.B*(-(y-pos_oper));
T_limit_sup = 3.5; % Upper torque limit
T_limit_inf = -3.5; % Lower torque limit
saturate=@(T) max(min(T,T_limit_sup),T_limit_inf);
% Define the model-control-output equation
Model.Control.OutputEq = @(t,theta,y) saturate(torque_oper + K.C*theta + K.D*(-(y-pos_oper)));
%% Numerical simulation
Idx_process=1:Process_Order;
Idx_control = Process_Order + (1:Control_Order);
odefun = @(t,FullState) CL_StateEQ(t,FullState(Idx_process),FullState(Idx_control),Model);
Ini_state_process = [pi/30;0]; % Initial state for the process
Ini_state_control = 0; % Initial state for the control
x0 = [Ini_state_process;Ini_state_control];
t_fin = 6; % Final time for simulation
CPU_ode45 =cputime;
tic;
[T_ode45,X_ode45] = ode45(odefun, [0 t_fin], x0, odeset('RelTol',1e-6,'AbsTol',1e-6));
ejecution_time_ode45 = toc;
CPU_ode45 = cputime - CPU_ode45;
Wrong code for PID controller:
%% Define the process model
% Define the constants values
M = 0.5; % Mass
g = 9.81; % Acceleration due to gravity
f = 0.25; % Friction coefficient
l = 1; % Length
% Define the operation parameters, force, and torque.
pos_oper = 0; % Operating position
torque_oper = 0; % Operating torque
% Define the structure model for process part
Model.Process.StateEq = @(t,theta,T) [theta(2); g*sin(theta(1)) - f/M*theta(2)+T/M];
Model.Process.OutputEq = @(t,theta,T) theta(1);
Process_Order = 2;
%% Linear PD controller
% Hand-tuned PD controller (with derivative noise filter):
s = tf('s');
Kp = 7; % Proportional gain
Ki = 0.01;
Kd = 1.3; % Derivative gain
filter = 20; % Derivative noise filter
F_transfer = Kp+Ki/s+Kd*s/(s/filter + 1);
K = ss(F_transfer);
Control_Order = size(K.A,1);
%% Define the control model
% Define the model - control - stateEq
Model.Control.StateEq = @(t,theta,y) K.A*theta+K.B*(-(y-pos_oper));
T_limit_sup = 3.5; % Upper torque limit
T_limit_inf = -3.5; % Lower torque limit
saturate=@(T) max(min(T,T_limit_sup),T_limit_inf);
% Define the model-control-output equation
Model.Control.OutputEq = @(t,theta,y) saturate(torque_oper + K.C*theta + K.D*(-(y-pos_oper)));
%% Numerical simulation
Idx_process=1:Process_Order;
Idx_control = Process_Order + (1:Control_Order);
odefun = @(t, FullState) [
Model.Process.StateEq(t, FullState(Idx_process), Model.Control.OutputEq(t, FullState(Idx_control), Model.Process.OutputEq(t, FullState(Idx_process), 0)));
Model.Control.StateEq(t, FullState(Idx_control), Model.Process.OutputEq(t, FullState(Idx_process), 0), Model.Process.OutputEq)
];
Ini_state_process = [pi/30;0]; % Initial state for the process
Ini_state_control = 0; % Initial state for the control
x0 = [Ini_state_process;Ini_state_control];
t_fin = 6; % Final time for simulation
CPU_ode45 =cputime;
tic;
[T_ode45,X_ode45] = ode45(odefun, [0 t_fin], x0, odeset('RelTol',1e-6,'AbsTol',1e-6));
ejecution_time_ode45 = toc;
CPU_ode45 = cputime - CPU_ode45;
%%
odefun = @(t,FullState) CL_StateEQ(t,FullState(Idx_process),FullState(Idx_control(2,1)),Model);
Ini_state_process = [pi/30;0]; % Initial state for the process
Ini_state_control = 0; % Initial state for the control
x0 = [Ini_state_process;Ini_state_control];
t_fin = 6; % Final time for simulation
CPU_ode45 =cputime;
tic;
[T_ode45,X_ode45] = ode45(odefun, [0 t_fin], x0, odeset('RelTol',1e-6,'AbsTol',1e-6));
ejecution_time_ode45 = toc;
CPU_ode45 = cputime - CPU_ode45;
2 个评论
Jon
2024-1-29
I tried to run the code you attached to see if I could reproduce the problem and help you debug it, but I do not have the function CL_StateEQ. Can you please attach this, and any other code needed to provide a self contained example that reproduces the problem.
采纳的回答
Sam Chak
2024-1-29
Could you please check if the current response of the inverted pendulum under the PID controller aligns with the expected result? In the code, I have marked the lines where I made changes with '<--'.
%% Define the process model
% Define the constants values
M = 0.5; % Mass
g = 9.81; % Acceleration due to gravity
f = 0.25; % Friction coefficient
l = 1; % Length
% Define the operation parameters, force, and torque.
pos_oper = 0; % Operating position
torque_oper = 0; % Operating torque
% Define the structure model for process part
Model.Process.StateEq = @(t,theta,T) [theta(2); g*sin(theta(1)) - f/M*theta(2)+T/M];
Model.Process.OutputEq = @(t,theta,T) theta(1);
Process_Order = 2;
%% Linear PID controller <--
% Hand-tuned PID controller (with derivative noise filter): <--
s = tf('s');
Kp = 7; % Proportional gain
Ki = 0.01;
Kd = 1.3; % Derivative gain
filter = 20; % Derivative noise filter
F_transfer = Kp+Ki/s+Kd*s/(s/filter + 1);
K = ss(F_transfer);
Control_Order = size(K.A,1);
%% Define the control model
% Define the model - control - stateEq
Model.Control.StateEq = @(t,theta,y) K.A*theta+K.B*(-(y-pos_oper));
T_limit_sup = 3.5; % Upper torque limit
T_limit_inf = -3.5; % Lower torque limit
saturate=@(T) max(min(T,T_limit_sup),T_limit_inf);
% Define the model-control-output equation
Model.Control.OutputEq = @(t,theta,y) saturate(torque_oper + K.C*theta + K.D*(-(y-pos_oper)));
%% Numerical simulation
Idx_process=1:Process_Order;
Idx_control = Process_Order + (1:Control_Order);
% odefun = @(t, FullState) [
% Model.Process.StateEq(t, FullState(Idx_process), Model.Control.OutputEq(t, FullState(Idx_control), Model.Process.OutputEq(t, FullState(Idx_process), 0)));
% Model.Control.StateEq(t, FullState(Idx_control), Model.Process.OutputEq(t, FullState(Idx_process), 0), Model.Process.OutputEq)
% ];
% Ini_state_process = [pi/30;0]; % Initial state for the process
% Ini_state_control = [0; 0]; % Initial state for the control
% x0 = [Ini_state_process;Ini_state_control];
% t_fin = 6; % Final time for simulation
% CPU_ode45 =cputime;
% tic;
% [T_ode45,X_ode45] = ode45(odefun, [0 t_fin], x0, odeset('RelTol',1e-6,'AbsTol',1e-6));
% ejecution_time_ode45 = toc;
% CPU_ode45 = cputime - CPU_ode45;
%%
odefun = @(t,FullState) CL_StateEQ(t, FullState(Idx_process), FullState(Idx_control), Model); % <--
Ini_state_process = [pi/30;0]; % Initial state for the process
Ini_state_control = [0; 0]; % TWO Initial state for the control <--
x0 = [Ini_state_process;Ini_state_control];
t_fin = 6; % Final time for simulation
CPU_ode45 = cputime;
tic;
[T_ode45,X_ode45] = ode45(odefun, [0 t_fin], x0, odeset('RelTol',1e-6,'AbsTol',1e-6));
ejecution_time_ode45 = toc;
CPU_ode45 = cputime - CPU_ode45;
plot(T_ode45, rad2deg(X_ode45(:,1))), grid on % <-- added to display result
function dxdtbc = CL_StateEQ(t, ProcessState, ControlState, M)
% That indicates de close-loop
Measurements = M.Process.OutputEq(t, ProcessState);
dControllerStatedt = M.Control.StateEq(t, ControlState, Measurements);
u = M.Control.OutputEq(t, ControlState, Measurements);
dSProcesStatedt = M.Process.StateEq(t, ProcessState, u);
dxdtbc = [dSProcesStatedt; dControllerStatedt];
end
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Assembly 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!