I'm suppose to plot the conventional integral , but I'm getting wrong values

2 次查看(过去 30 天)
ok
  2 个评论
VBBV
VBBV 2024-2-11
You need to specify the condition for the first 7 seconds given in your problem inside the loop as below
% Clear the workspace, close all figures, and clear command window
clc;
clear all;
close all;
% Given parameters
f1 = 3; % Amplitude of the forcing function
f2 = 0; % Second amplitude (set to 0)
T1 = 7; % Time period for first interval
T2 = 30; % Time period for second interval
T3 = 40; % Time period for third interval
zeta = 0.1; % Damping ratio
wn = 3; % Natural frequency
wd = wn * sqrt(1 - zeta^2); % Damped natural frequency
m = 1; % Mass
% Define symbolic variables
syms t tau;
% Define the forcing function F1(t)
F1 = (f1*t/ T1);
% Calculate damping coefficient
c1 = (1 / (m * wd));
A = 1;
% Define the impulse response function x1(tau)
x1 = A*(exp(-zeta * (t - tau))) * (sin(wd * (t - tau)));
x2 = exp(-zeta * (t - tau)) * (sin(wd * (t - tau)));
% Define expressions for each interval of x(t)
x_1 = c1 * int(x1, tau, 0, t);
x_2 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, t));
x_3 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, T2) + int(f2*x2, tau, T2, T3));
x_4 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, T2) + int(f2*x2, tau, T2, T3) + int(0, tau, T3, t));
% Total expression for x(t)
X_total = x_1 + x_2+ x_3 + x_4;
% Define time vector
t_values = linspace(0, T3, 1000);
% Evaluate x(t) for each time point
x_values = zeros(size(t_values));
for i = 1:length(t_values)
if t_values(i) <= 7
x_values(i) = double(subs(F1, t, t_values(i))); % from the given conditions in your question
else
x_values(i) = double(subs(X_total, t, t_values(i)));
end
end
% Plot x(t)
plot(t_values, x_values, 'b', 'LineWidth', 2);
xlabel('Time (s)');
ylabel('Displacement (m)');
title('Displacement Response x(t)');
grid on;

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2024-2-9
编辑:Torsten 2024-2-9
syms t x(t)
zeta = 0.1;
omegan = 3;
f1 = 1;
f2 = 0;
T1 = 7;
T2 = 30;
T3 = 40;
D2x = diff(x,t,2);
Dx = diff(x,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f1*t/T1;
conds = [x(0)==0,Dx(0)==0];
x1 = dsolve(eqn,conds);
Dx1 = diff(x1,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T1)==subs(x1,t,T1),Dx(T1)==subs(Dx1,t,T1)];
x2 = dsolve(eqn,conds);
Dx2 = diff(x2,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f2;
conds = [x(T2)==subs(x2,t,T2),Dx(T2)==subs(Dx2,t,T2)];
x3 = dsolve(eqn,conds);
Dx3 = diff(x3,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T3)==subs(x3,t,T3),Dx(T3)==subs(Dx3,t,T3)];
x4 = dsolve(eqn,conds);
x = piecewise(t>= 0 & t < T1,x1,t >=T1 & t < T2, x2, t>=T2 & t < T3,x3,t>=T3,x4);
fplot(x,[0 50])
  5 个评论
Torsten
Torsten 2024-2-11
编辑:Torsten 2024-2-11
You mean if the solution from 0 to 7 s in my code is correct ?
If the equation you want to solve for the damped spring/mass system is
x''+2*zeta*omega*x'+omega^2*x = f
I think it's correct.
But let's check:
syms t x(t)
zeta = 0.1;
omegan = 3;
f1 = 1;
f2 = 0;
T1 = 7;
T2 = 30;
T3 = 40;
D2x = diff(x,t,2);
Dx = diff(x,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f1*t/T1;
conds = [x(0)==0,Dx(0)==0];
x1 = dsolve(eqn,conds);
Dx1 = diff(x1,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T1)==subs(x1,t,T1),Dx(T1)==subs(Dx1,t,T1)];
x2 = dsolve(eqn,conds);
Dx2 = diff(x2,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f2;
conds = [x(T2)==subs(x2,t,T2),Dx(T2)==subs(Dx2,t,T2)];
x3 = dsolve(eqn,conds);
Dx3 = diff(x3,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T3)==subs(x3,t,T3),Dx(T3)==subs(Dx3,t,T3)];
x4 = dsolve(eqn,conds);
x = piecewise(t>= 0 & t < T1,x1,t >=T1 & t < T2, x2, t>=T2 & t < T3,x3,t>=T3,x4);
fplot(x,[0 50])
fun = @(t,x)[x(2);-2*zeta*omegan*x(2)-omegan^2*x(1)+f1*t/T1];
[T,Y] = ode45(fun,[0 T1],[0 0]);
hold on
plot(T,Y(:,1))
grid on

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Function Creation 的更多信息

产品


版本

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by