Do source blocks in Simulink have an implicit unit step function built into them?
2 次查看(过去 30 天)
显示 更早的评论
I'm trying to understand some confusing behavior in Simulink and I'm not sure if the problem is my understanding of how Simulink works or if its about my understanding of linear systems more fundamentally.
I'm trying to set up a basic simulation that shows linearity by comparing results from two systems. The first system has numerator dynamics (a single s in the numerator) applied to a cosine input, and the second has no numerator dynamics (unity in the numerator) but the input to the system has already been differentiated analytically. I expect that both systems should output identical results.
However, what I am finding is that the system with numerator dynamics also includes a unit impulse response. The minimal example in the screen grab below shows my source of confusion. The only explanation I can come up with is that there is a hidden step function in the cosine source block, so that when differentiated we see something like:
.
0 个评论
采纳的回答
Paul
2024-2-15
For the top path:
Y(s) = s/(s+1)*X(s) = 1/(s+1) * (s*X(s))
The differentation rule for the one-sided Laplace transform is:
L(dx(t)/dt) = s*X(s) - x(0) (or x(0-) if we want to be precise).
So: s*X(s) = L(dx(t)/dt) + x(0).
x(t) = cos(t) and dx(t)/dt = -sin(t).
The output of the top path is then:
Y(s) = 1/(s+1) * ( L(dx(t)/dt) + x(0) )
Y(s) = 1/(s+1) * ( L(-sin(t)) + x(0) )
Y(s) = 1/(s+1)*L(-sin(t)) + x(0)/(s + 1)
Y(s) = Bottompath(s) + x(0)/(s + 1)
x(0) = 1 (x(t) = cos(t)
y(t) = Bottompath(t) + exp(-t);
2 个评论
Paul
2024-2-16
No, the bold part is
( L(-sin(t)) + x(0) )
or (removing the outer parentheses)
L(-sin(t)) + x(0)
The Laplace operator does not operate on x(0).
I think I see your thought process, which is to assume that the input signals are formally multiplied by a unit step function. In this view (which I don't disagree with) the same result obtains.
Again, focusing on the top:
x(t) = cos(t)*u(t)
dx(t)/dt = delta(t)*cos(t) - sin(t)*u(t)
Using the equivalence principal:
dx(t)/dt = delta(t) - sin(t)*u(t)
Going to the frequency domain, using the deifnition of the unilateral Laplace transform with lower bound at 0-
L(dx(t)/dt) = s*X(s) - x(0-).
Because x(t) includes the unit step, we have
x(0-) = 0 -> L(dx(t)/dt) = s*X(s) (for this problem)
Returning to the original equation implemented in Simulink:
Y(s) = 1/(s+1) * s*X(s) = 1/(s+1) * L(dx(t)/dt)
L(dx(t)/dt) = L(delta(t) - sin(t)*u(t)) = 1 + L(-sin(t)*u(t))
which is the bold equation we started (with x(0) = 1 as was the case when x(t) = cos(t) )
so
Y(s) = 1/(s+1) * L(-sin(t)*u(t)) + 1/(s+1)
y(t) = bottompath(t) + exp(-t)*u(t)
which is the same as the previous result, with the subtle assumption that we define u(t) s.t., u(0) = 1.
更多回答(1 个)
Fangjun Jiang
2024-2-15
The answer is no.
Maybe this will help
s/(s+1)=(s+1-1)/(s+1)=1-1/(s+1)
3 个评论
Fangjun Jiang
2024-2-15
That is true. The difference could be explained by setting different initial value.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 General Applications 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!