How to plot the error of two numerical methods on the same graph?

5 次查看(过去 30 天)
I'm trying to plot the error of two methods, but I got the following error
Index exceeds the number of array elements (3)
Also, How can I plot the error of the two methods on the same graph?
function xnew = newtonmethod(f,df,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
Error=[Error;err];
end
%% Graph
plot(1:i,Error(1:i),'r-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2nd method
function xnewh = Hmethod(f,df,ddf,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
ddf=@(x) -4.5*sin(x);
x0=1;
tol=0.0001;
n=50;
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
Errorh=[Errorh;errh];
end
%% Graph
plot(1:i,Errorh(1:i),'b-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%

采纳的回答

Star Strider
Star Strider 2024-2-16
I cannot run your code because I do not have arguments for the functions. (I tweaked them to make them a bit more efficient.)
Plotting both results in the same axes is relativbely straightforward.
Example (using different functions)
figure
plot1
hold on
plot2
hold off
grid
function plot1
plot((0:0.1:5), sin((0:0.1:5)*pi))
end
function plot2
plot((0:0.1:5), cos((0:0.1:5)*pi))
end
%
%
% function xnew = newtonmethod(f,df,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% x0=1;
% tol=0.0001;
% n=50;
% %% Newton code
% disp('No Itr Solution Error ')
% Error=zeros(1,n);
% for i=1:n
% xnew=x0-(f(x0)/df(x0));
% err=abs(xnew-x0);
% fprintf('%3i %11.4f %11.4f %11.4f\n',i,x0,err);
% if (err<tol)
% break
% end
% x0=xnew;
% Error(i)=err;
% end
% %% Graph
%
%
% plot(1:n,Error,'r-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% 2nd method
% function xnewh = Hmethod(f,df,ddf,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% ddf=@(x) -4.5*sin(x);
%
% x0=1;
% tol=0.0001;
% n=50;
% %% code
% disp('No Itr Solution Errorh')
%
% Errorh=zeros(1,n);
% for i=1:n
%
% xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
% errh=abs(xnewh-x0);
%
% fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
% if (errh<tol)
% break
% end
%
% x0=xnewh;
% Errorh(i)=errh;
% end
% %% Graph
%
%
% plot(1:n,Errorh,'b-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %
.
  6 个评论

请先登录,再进行评论。

更多回答(1 个)

Torsten
Torsten 2024-2-16
编辑:Torsten 2024-2-16
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
[x_newton,i_newton,Error_newton]=newtonmethod(f,df,x0,tol,n);
No Itr Solution Error 1 1.0000 3.5224 2 4.5224 3.1347 3 1.3877 1.6791 4 3.0668 0.6080 5 2.4588 0.0282 6 2.4306 0.0001 7 2.4305 0.0000
ddf=@(x) -4.5*sin(x);
[x_Hmethod,i_Hmethod,Error_Hmethod]=Hmethod(f,df,ddf,x0,tol,n);
No Itr Solution Errorh 1 1.0000 0.8339 2 1.8339 0.5654 3 2.3993 0.0312 4 2.4305 0.0000
%Plot results
hold on
plot(1:i_newton,Error_newton,'r-','Linewidth',02)
plot(1:i_Hmethod,Error_Hmethod,'b-','Linewidth',02)
hold off
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
function [xnew,i,Error] = newtonmethod(f,df,x0,tol,n)
%% Newton code
disp('No Itr Solution Error ')
Error=[];
for i=1:n
xnew=x0-(f(x0)/df(x0));
err=abs(xnew-x0);
Error=[Error;err];
fprintf('%3i %11.4f %11.4f\n',i,x0,err);
if (err<tol)
break
end
x0=xnew;
end
end
%% 2nd method
function [xnewh,i,Errorh] = Hmethod(f,df,ddf,x0,tol,n)
%% code
disp('No Itr Solution Errorh')
Errorh=[];
for i=1:n
xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
errh=abs(xnewh-x0);
Errorh=[Errorh;errh];
fprintf('%3i %11.4f %11.4f\n',i,x0,errh);
if (errh<tol)
break
end
x0=xnewh;
end
end

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by