Boundary Value Problem based on specific problem
3 次查看(过去 30 天)
显示 更早的评论
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
T = 1/f % Fundamental Time-Period (sec)
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
vm = A*wn % Maximum Velocity (m/s)
am = vm*wn % Maximum Acceleration (m/s/s)
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
x = dsolve(E) % C1 & C2 are constant and can be determined by BCs
%% I need to find constant C1 & C2 through boundary value problem as x(0) = 0 & x'(0)=0. Can someone help me out?
0 个评论
采纳的回答
Torsten
2024-2-28
移动:Torsten
2024-2-28
x(0) = 0 gives C1 = 0, x'(0) = 0 gives C2 = 0. Thus the solution of your equation is x = 0 for all t.
2 个评论
Torsten
2024-2-29
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
T = 1/f % Fundamental Time-Period (sec)
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
vm = A*wn % Maximum Velocity (m/s)
am = vm*wn % Maximum Acceleration (m/s/s)
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
dX = diff(X,t);
conds =[X(0)==0.02,dX(0)==0.25];
x = dsolve(E,conds) % C1 & C2 are constant and can be determined by BCs
fplot(x,[0 1])
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Particle & Nuclear Physics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!