How to simplify infinite double matrix summation in Matlab.

3 次查看(过去 30 天)
I need to calculate the following sum:
I used the following code:
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1];
syms k l t
f = ((-A).^k./factorial(k)).*((factorial(k+l).*(-R).^l)/gamma((2-beta).*l...
+ 2.*k + 2)).*((t.^((2-beta).*l+2.*k+1))/factorial(l));
F = vpasum(vpasum(f,k,0,inf),l,0,inf);
G = subs(F,t,1)
G = 
This yields G as a symbolic sum but I need it as numeric sum. I tried it using symsum function but that too yields a symbolic answer. Using, subs function for t=1 won't change it into a numeric value. Any help would be highly appriciated.
  5 个评论
Hilal Ahmad Bhat
Hilal Ahmad Bhat 2024-3-3
@Walter Roberson Yes, you are right but that won't make any difference in this case.

请先登录,再进行评论。

采纳的回答

Walter Roberson
Walter Roberson 2024-3-3
移动:Walter Roberson 2024-3-3
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1];
syms k l t
f = ((-A)^k./factorial(k)).*((factorial(k+l).*(-R)^l)/gamma((2-beta).*l...
+ 2.*k + 2)).*((t.^((2-beta).*l+2.*k+1))/factorial(l));
F = symsum(symsum(f,k,0,inf),l,0,inf);
G = subs(F,t,1)
G = 
vpa(G)
ans = 
  6 个评论
Torsten
Torsten 2024-3-5
编辑:Torsten 2024-3-5
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1]; t = 1;
mat = zeros(2);
mat_inner = Inf(2);
tol = 1e-6;
s1 = 0;
while norm(mat_inner,'fro') > tol
mat_inner = zeros(2);
for s2 = 0:s1
mat_inner = mat_inner + f(s1-s2,s2,beta,A,R,t);
end
mat = mat + mat_inner;
s1 = s1 + 1;
end
s1
s1 = 45
format long
mat
mat = 2x2
2.514129941450880 -2.868263680288298 -0.720173713227138 1.221004006453150
function mat = f(k,l,beta,A,R,t)
mat = (-1)^(k+l)*A^k/factorial(k)*R^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end

请先登录,再进行评论。

更多回答(1 个)

Torsten
Torsten 2024-3-2
编辑:Torsten 2024-3-2
Are you sure that the matrix potentials for A and R are meant elementwise ?
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1]; t = 1;
N = 50;
M = N;
mat = zeros(2);
for s1 = 0:N
for s2 = 0:M
mat = mat + f(s1,s2,beta,A,R,t);
end
end
mat
mat = 2×2
0.8415 0.2856 0.5560 0.4253
function mat = f(k,l,beta,A,R,t)
mat = (-A).^k/factorial(k).*(-R).^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
  3 个评论
Hilal Ahmad Bhat
Hilal Ahmad Bhat 2024-3-3
编辑:Hilal Ahmad Bhat 2024-3-3
Oh! It is my mistake. The matrix potential is not elementwise. It is the meant to be the matrix multiplication (i.e., rows × colums). Whatever be the case, I am stuck at finding the infinite sum. I think while loop might help but I don't know how to do it with double summation.
Torsten
Torsten 2024-3-3
编辑:Torsten 2024-3-3
I doubt you will find an analytical expression for your double sum - that's what summing up to infinity would mean. Thus you will have to compute the sum numerically.
Infinite sums are numerically evaluated by building finite sums up to an index N until the result changes only neclectably if N is increased.
That's what I did.
If you meant usual matrix multiplication, replace
function mat = f(k,l,beta,A,R,t)
mat = (-A).^k/factorial(k).*(-R).^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
by
function mat = f(k,l,beta,A,R,t)
mat = (-A)^k/factorial(k)*(-R)^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by