required assistance in fitting

2 次查看(过去 30 天)
HI
I was trying to fit my data (in attchment) with fiist column V and second column J(V) with following equation (which honestly found complex to me)
mb = 9.11E-31; e = 1.6E-19; t = 3E-9; = 1.05E-34;
with Φ1 and Φ2 as the fitting parameters
Your support in this regard is apreiable!
Best
Somnath
  2 个评论
Mathieu NOE
Mathieu NOE 2024-3-12
do we have an initial guess or range for Φ1 and Φ2 ?
Somnath Kale
Somnath Kale 2024-3-12
@Mathieu NOE values of Φ1 and Φ2 are within the range of 0.1 to 5 in eV units

请先登录,再进行评论。

采纳的回答

Mathieu NOE
Mathieu NOE 2024-3-12
so this is the poor"s man optimization (w/o any toolbox)
a brute force approach , let's create a 2 parameter grid and evaluate the function vs your data
the complex equation is simplified by taking some large blocks and define intermediate variables , instead of writing a unreadable long stuff.
we get a 2 dimensionnal error map (plotted after log conversion for better rendering) , and we pick the point of minimal error
we are fortunate that the error surface is rather smooth (banana)
for my own fun I did 2 iterations, the second is just refined grid around the first obtained minima point
% load J and V data
data = readmatrix('data.xlsx'); % first column V and second column J(V)
V = data(:,1);
J = data(:,2);
mb = 9.11E-31;
e = 1.6E-19;
t = 3E-9;
h = 1.05E-34;
A = 4*e*mb/(9*pi^2*h^3);
const_alpha = 4*t*sqrt(2*mb)/(3*h);
%Φ1 and Φ2 are within the range of 0.1 to 5 in eV units
%% First iteration
increment1 = 0.017;
increment2 = 0.019;
phi1 = (-min(0.5*V)+eps:increment1:2);
phi2 = (max(0.5*V):increment2:4);
for ci = 1:numel(phi1)
for cj = 1:numel(phi2)
P1 = phi1(ci)*e;
P2 = phi2(cj)*e;
Jm = model(const_alpha,e,A,P1,P2,V);
err2(ci,cj) = mean((J - Jm).^2);
end
end
[val,ind] = min(err2,[],'all','linear');
error_after_first_iteration = val
error_after_first_iteration = 3.9231e-07
range_factor = 100;
err2(err2>range_factor*val) = range_factor*val;
figure,imagesc(log10(err2));colorbar('vert');
colormap('jet')
% find optimum point
[r,c] = ind2sub(size(err2),ind);
P1 = phi1(r)*e;
P2 = phi2(c)*e;
Jm1 = model(const_alpha,e,A,P1,P2,V);
%% second iteration ??
clear err2
phi1 = linspace(phi1(r)*0.8,phi1(r)*1.2,100);
phi2 = linspace(phi2(c)*0.8,phi2(c)*1.2,100);
for ci = 1:numel(phi1)
for cj = 1:numel(phi2)
P1 = phi1(ci)*e;
P2 = phi2(cj)*e;
Jm = model(const_alpha,e,A,P1,P2,V);
err2(ci,cj) = mean((J - Jm).^2);
end
end
[val,ind] = min(err2,[],'all','linear');
error_after_second_iteration = val
error_after_second_iteration = 3.8205e-07
range_factor = 100;
err2(err2>range_factor*val) = range_factor*val;
figure,imagesc(log10(err2));colorbar('vert');
colormap('jet')
% find optimum point
[r,c] = ind2sub(size(err2),ind);
P1 = phi1(r)*e;
P2 = phi2(c)*e;
Jm2 = model(const_alpha,e,A,P1,P2,V);
figure,
plot(V,J,V,Jm1,V,Jm2)
xlabel('V');
ylabel('J(V)');
legend('raw','1st iteration','2nd iteration');
% optimal phi1 and phi2 (in eV)
phi1(r)
ans = 0.8005
phi2(c)
ans = 2.1355
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function
function Jm = model(const_alpha,e,A,P1,P2,V)
E = sqrt(P2 - 0.5*e*V);
F = sqrt(P1 + 0.5*e*V);
G = (P2 - 0.5*e*V).^1.5;
H = (P1 + 0.5*e*V).^1.5;
alpha = const_alpha./(P1 - P2 +e*V);
N = exp(alpha.*(G - H));
D = (alpha.^2).*(E - F).^2;
B = 3/4*alpha.*e.*V;
Jm = -A*N./D.*sinh(B.*(E-F));
end
  3 个评论
Mathieu NOE
Mathieu NOE 2024-3-13
here, for my own fun, I used fminsearch (no toolbox required !) in the second iteration
still we need the first iteration, based on grid search principle , to find good IC for the fminsearch final optimization
again, similar results as above , the second iteration loop brings no big improvement, but it shows how to use fminsearch in this context
have fun !
error_after_first_iteration = 3.9231e-07
P1 = 0.7650
P2 = 2.1840
error_after_second_iteration = 3.8202e-07
P1 = 0.7999
P2 = 2.1360
% load J and V data
data = readmatrix('data.xlsx'); % first column V and second column J(V)
V = data(:,1);
J = data(:,2);
mb = 9.11E-31;
e = 1.6E-19;
t = 3E-9;
h = 1.05E-34;
A = 4*e*mb/(9*pi^2*h^3);
const_alpha = 4*t*sqrt(2*mb)/(3*h);
%Φ1 and Φ2 are within the range of 0.1 to 5 in eV units
%% First iteration
increment1 = 0.017;
increment2 = 0.019;
phi1 = (-min(0.5*V)+eps:increment1:2);
phi2 = (max(0.5*V):increment2:4);
for ci = 1:numel(phi1)
for cj = 1:numel(phi2)
P1 = phi1(ci)*e;
P2 = phi2(cj)*e;
Jm = model(const_alpha,e,A,P1,P2,V);
err2(ci,cj) = mean((J - Jm).^2);
end
end
[val,ind] = min(err2,[],'all','linear');
error_after_first_iteration = val
range_factor = 100;
err2(err2>range_factor*val) = range_factor*val;
figure,imagesc(log10(err2));colorbar('vert');
colormap('jet')
% find optimum point
[r,c] = ind2sub(size(err2),ind);
% optimal phi1 and phi2 (in eV)
P1 = phi1(r)
P2 = phi2(c)
Jm1 = model(const_alpha,e,A,P1*e,P2*e,V);
%% second iteration ??
% optimisation with fminsearch
% global const_alpha e A V J
IC = [phi1(r) phi2(c)];
[x,FVAL] = fminsearch(@objectivefcn1,IC);
% optimal phi1 and phi2 (in eV)
P1 = x(1)
P2 = x(2)
Jm2 = model(const_alpha,e,A,P1*e,P2*e,V);
error_after_second_iteration = FVAL
figure,
plot(V,J,V,Jm1,V,Jm2)
xlabel('V');
ylabel('J(V)');
legend('raw','1st iteration','2nd iteration');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function
function Jm = model(const_alpha,e,A,P1,P2,V)
E = sqrt(P2 - 0.5*e*V);
F = sqrt(P1 + 0.5*e*V);
G = (P2 - 0.5*e*V).^1.5;
H = (P1 + 0.5*e*V).^1.5;
alpha = const_alpha./(P1 - P2 +e*V);
N = exp(alpha.*(G - H));
D = (alpha.^2).*(E - F).^2;
B = 3/4*alpha.*e.*V;
Jm = -A*N./D.*sinh(B.*(E-F));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = objectivefcn1(x)
global const_alpha e A V J
% P1 = phi1(r)*e;
% P2 = phi2(c)*e;
P1 = x(1)*e;
P2 = x(2)*e;
Jm = model(const_alpha,e,A,P1,P2,V);
f = mean((J - Jm).^2);
end

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by