Error using dlarray/dlgradient : Value to differentiate is non-scalar. It must be a traced real dlarray scalar.

21 次查看(过去 30 天)
Hello, I want to train a Seq_to_one regression problem using a mae loss function found at "https://www.mathworks.com/help/deeplearning/ug/define-custom-regression-output-layer.html"
Input are :
X_train1 is 9x27 double array
Y_train2 is 9x3 double array
data_0.xlsx and mae loss function m file are attached
error occurred :
Error using trainNetwork
Error using 'backwardLoss' in Layer maeRegressionLayer. The function threw an error and could not be executed.
Caused by:
Error using dlarray/dlgradient
Value to differentiate is non-scalar. It must be a traced real dlarray scalar.
numChannels = 1;
numResponses = 3;
numHiddenUnits2 = 3;
X_train1 = xlsread('data_0.xlsx',1,'A2:AA10');
X_train2 = num2cell(X_train1,2);
Y_train2 = xlsread('data_0.xlsx',2,'A2:C10');
layers = [ ...
sequenceInputLayer(numChannels,Normalization="zscore")
gruLayer(numHiddenUnits2,OutputMode="last")
fullyConnectedLayer(3)
maeRegressionLayer('mae')];
opts = trainingOptions('adam',...
'MaxEpochs',3000000,...
'GradientThreshold',0.1,...
'InitialLearnRate',0.01,...
'MiniBatchSize',27,...
'ResetInputNormalization',false, ...
'VerboseFrequency',50, ...
'Plots','training-progress');
[net1,info] = trainNetwork(X_train2, Y_train2, layers, opts);
save net1;

采纳的回答

Venu
Venu 2024-3-19
Try making these 2 modifications:
1. Use "mean(meanAbsoluteError, 'all')" to calculate the MAE. This simplifies the calculation and ensures that the loss is aggregated across all dimensions, resulting in a scalar value. This change is crucial because the training function expects a single scalar loss value to optimize, not an array of losses.
2. In custom layers, especially for regression tasks, both forwardLoss and backwardLoss methods need to be properly defined. Add "backwardLoss" method which calculates the gradient of the loss with respect to the predictions, which is essential for backpropagation during training.
classdef maeRegressionLayer < nnet.layer.RegressionLayer ...
& nnet.layer.Acceleratable
% Example custom regression layer with mean-absolute-error loss.
methods
function layer = maeRegressionLayer(name)
% layer = maeRegressionLayer(name) creates a
% mean-absolute-error regression layer and specifies the layer
% name.
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = 'Mean absolute error';
end
function loss = forwardLoss(~, Y, T)
% Calculate MAE.
meanAbsoluteError = abs(Y-T);
% Take mean over all elements.
loss = mean(meanAbsoluteError, 'all');
end
function dLdY = backwardLoss(~, Y, T)
% dLdY = backwardLoss(layer, Y, T) returns the derivatives of the
% MAE loss with respect to the predictions Y.
% Calculate gradients
R = size(Y,3);
N = size(Y,4);
dLdY = sign(Y - T) / (R * N);
end
end
end
Hope this helps!

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

标签

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by