Hi CHARUMATHI P R,
I understand that you need to calculate the ABCD parameters for different values of N (10, 20, 30) and then use these parameters to compute the S-Parameters. Here's how you can approach both parts:
First, let's calculate the ABCD parameters for (N = 10, 20, 30). This involves creating the ABCD matrix and then raising it to the power of N. The ABCD parameters are dependent on frequency, so this operation needs to be performed for each frequency point:
% Rest of the code
% Calculate matrices for N = 10, 20, 30
N_values = [10, 20, 30];
for N_idx = 1:length(N_values)
N = N_values(N_idx);
M = [A; B; C; D];
M = reshape(M, [2,2,length(f)]); % Reshape so that we can perform element-wise matrix power
for f_idx = 1:length(f)
M_N(:,:,f_idx) = M(:,:,f_idx)^N; % Matrix power
end
% M_N now contains Matrix M raised to power N
end
Next, we use the ABCD parameters obtained for each N to calculate the S-Parameters. This involves extracting the A_N, B_N, C_N, and D_N parameters from the matrix and then using them in the S-Parameter equations:
S_matrices = cell(length(N_values), 1);
% Using the same for loop as above
for N_idx = 1:length(N_values)
N = N_values(N_idx);
% Assuming M_N is calculated as shown above
A_N = squeeze(M_N(1,1,:));
B_N = squeeze(M_N(1,2,:));
C_N = squeeze(M_N(2,1,:));
D_N = squeeze(M_N(2,2,:));
% Calculate S-parameters based on the equations provided
S11 = (A_N + B_N/Z_C - C_N*Z_C - D_N) ./ (A_N + B_N/Z_C + C_N*Z_C + D_N);
S21 = 2 ./ (A_N + B_N/Z_C + C_N*Z_C + D_N);
% Similarly, Calculate the rest ...
S_matrices{N_idx} = [S11; S21; S12; S22];
end
I hope this helps!