Simulation data Fittting problem

1 次查看(过去 30 天)
tuhin
tuhin 2024-4-1
评论: Torsten 2024-4-2
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Define parameters
lambda = 1.2;
R = 180; Or can use range anything above 75 to 400
rout = 75;
% Create figure for separate plots
for i = 1:length(kappa_range)
for j = 1:length(theta_k_range)
kappa = kappa_range(i);
theta_k = theta_k_range(j);
% Calculate functions for the chosen kappa and theta_k
omega_m = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
A1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * (-2 * (omega_m^2 + omega_p^2) / (omega_m^2 * omega_p^2) ...
+ rout * omega_m^2 * (kappa^2 - omega_p^4) / (kappa^2 * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)) ...
- rout * omega_p^2 * (kappa^2 - omega_m^4) / (kappa^2 * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)));
B1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * ...
(2 / (omega_m^2 * omega_p^2 * kappa) + rout / (kappa * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)) ...
- rout / (kappa * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(r, params) (2 * besselj(1, r * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
% Fit dr data
p_dr = lsqcurvefit(@(params, r) dr(r, params), [omega_p, A1], dr_data(:, 1), dr_data(:, 2));
% Fit dtheta data
p_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), [omega_p, A1], dtheta_data(:, 1), dtheta_data(:, 2));
% Plot dr and dtheta
figure;
subplot(2, 1, 1);
plot(r, dr(r, p_dr));
hold on;
scatter(dr_data(:, 1), dr_data(:, 2), 'r');
xlabel('r');
ylabel('dr');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
subplot(2, 1, 2);
plot(r, dtheta(r, p_dtheta));
hold on;
scatter(dtheta_data(:, 1), dtheta_data(:, 2), 'r');
xlabel('r');
ylabel('dtheta');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
end
end
................................
I want to fit the simulated data points of d_r(r) vs r and d_theta(r ) vs r using the below mentioned analytical solutions. There are two parameters. one is kappa and another one is theta_k. For the fitting the kappa can choose anything positive values the theta_k should be with in 0 to pi/2 any values. If required one can vary R also in between 75 to 1000 or so. That means lambda, kappa, theta_k, and R can be used as parameters to fit the datas. I am not getting any proper fitting of those two plots. I would be appreaciate any help or suggestion about ths fitting.
  3 个评论
tuhin
tuhin 2024-4-1
Thanks trosten! How to modify it? Can you please check the fitting with those 4 parmters. I checked and not working seems. If you have time please takae a look on the fitting.
tuhin
tuhin 2024-4-1
编辑:Voss 2024-4-1
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Best Parameters (Assumed)
best_params = [0.2, 2, pi/10, 200]; % Just for illustration, replace with actual values
% Constants
lambda = best_params(1); % Best lambda value
kappa = best_params(2); % Best kappa value
theta_k = best_params(3); % Best theta_k value
R = best_params(4); % Best R value
rout = 75; % Define rout
% Calculate omega_m and omega_p
omega_m = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
% Define A1 and B1
A1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(-2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) ...
+ rout * omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4) / (kappa^2 * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))) ...
- rout * omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4) / (kappa^2 * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))));
B1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(2 / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * kappa) + rout / (kappa * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))) ...
- rout / (kappa * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2))) ./ ...
(kappa^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k) .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * omega_p(lambda, kappa, theta_k)^2 .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) .* (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(omega_p(lambda, kappa, theta_k)^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
dtheta = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2)) .* ...
(-sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) - B1(R, kappa, lambda, theta_k, rout) * omega_p(lambda, kappa, theta_k) * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)))) ...
+ (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2))) .* ...
(sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
% Fit the data using the defined functions with initial guesses from best_params
params_dr = lsqcurvefit(@(params, r) dr(r, params), best_params(1:2), dr_data(:, 1), dr_data(:, 2));
params_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), best_params(1:2), dtheta_data(:, 1), dtheta_data(:, 2));
% Plot the results
figure;
subplot(1, 2, 1);
plot(dr_data(:, 1), dr_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dr_data(:, 1), dr(dr_data(:, 1), params_dr), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('dr');
legend('Location', 'best');
title('Fitting dr');
subplot(1, 2, 2);
plot(dtheta_data(:, 1), dtheta_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dtheta_data(:, 1), dtheta(dtheta_data(:, 1), params_dtheta), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('d\theta');
legend('Location', 'best');
title('Fitting d\theta');
Hi Torsten,Please check. still not working. please look into it

请先登录,再进行评论。

回答(1 个)

Torsten
Torsten 2024-4-1
编辑:Torsten 2024-4-1
Call lsqcurvefit once as
dr = @(params,r) (2 * besselj(1, r(:,1). * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r(:,1) * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r(:,1) * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(params,r) (2 * besselj(1, r(:,2) * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r(:,2) * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r(:,2) * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
params = lsqcurvefit(@(params,r)[dr(params,r),dtheta(params,r)],[omega_p, A1],[dr_data(:,1),dtheta_data(:,1)],[dr_data(:,2),dtheta_data(:,2)])
  18 个评论
tuhin
tuhin 2024-4-2
can you please modify the code and include this within the code?
Torsten
Torsten 2024-4-2
No, sorry. This is too much work to do.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Parallel Computing Fundamentals 的更多信息

产品


版本

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by