Doing genetic algorithm with heat transfer, need help sorting input based on how close output value is to the target
1 次查看(过去 30 天)
显示 更早的评论
I attched two codes, one called genetic_alg2.m which is a sample of genetic algorithm code and gen_alg_ht.m is the one I'm working on
I'm trying to find a combination of thermal conductivity and endpoint flux value that will result in certain maximum temperature and endpoint temperature
On line 138-145 of gen_alg_ht.m, I'm trying to sort my input based on how close the output value is to the target temperature. I tried copying line 75-87 of genetic_alg2.m word for word but it didn't work. Please advise.
0 个评论
回答(1 个)
Umang Pandey
2024-7-18
Hi Shasha,
Ensure that the LAMDA matrix is sorted correctly based on the indices obtained from sorting the PI values. Here's the corrected and integrated version of your code:
clc;
clear all;
% Given function Pi(x)
syms x;
syms Pi_b(x);
Pi_b(x) = (x + (pi/2) * sin(x))^2; % INPUT FUNCTION HERE
% Genetic Algorithm parameters
S = 6; % Number of strings per generation
P = 3; % Number of design strings to be preserved
TOL = 1E-7; % Tolerance
G = 4; % Total generations
desvar = 2; % Number of design variables per generation
gencount = 1; % Generation counter
w1 = 1000; % Weight for peak temperature
w2 = 1000; % Weight for endpoint temperature
% Target parameters
Temp_max_target = 495;
Temp_end_target = 460;
% Heat transfer parameters
alpha = 0.9; % Joule heating efficiency
Capa = 1000; % Heat capacity
E = 100; % Magnitude of electric field Volt/m
L = 0.01; % Bar length in meter
M3 = 20; % Number of cells
dens = 6000; % Density
ECond = 5E5; % Isotropic electrical conductivity S/m
temp0 = 300; % Initial temperature Kelvin
T = 1; % Simulation time seconds
del_t = 1E-5; % Time step size
% Calculations
J = E * ECond; % Current density
N = T / del_t; % Number of time discretizations
del_x = L / M3;
M3 = floor(M3); % or ceil(M3) or round(M3)
N = floor(N); % or ceil(N) or round(N)
% Initial guesses
g_Tcond_max = 495; % Upper limit conductivity guess
g_Tcond_min = 450; % Lower limit conductivity guess
g_del_max = -1E+7; % Upper limit flux guess
g_del_min = -2E+7; % Lower limit flux guess
% Matrices
% Genetic Algorithm matrices
LAMDA = rand(S, desvar); % Input TCond and flux
LAMDA(:,1) = LAMDA(:,1) * (g_Tcond_max - g_Tcond_min) + g_Tcond_min;
LAMDA(:,2) = LAMDA(:,2) * (g_del_min - g_del_max) + g_del_min;
PI = zeros(G, S); % Cost
ORIG = zeros(G, S); % Original index
PI_min = zeros(1, G); % Minimum cost
PI_avg = zeros(1, G); % Average cost
% Heat transfer matrices
Temp = zeros(M3+1, N+1); % Temperature
Temp(:,1) = temp0; % Initial condition
Temp_max_rec = zeros(G, S); % Max temp recorder
Temp_end_rec = zeros(G, S); % End temp recorder
% Tridiagonal matrix
a = zeros(M3+1, 1);
b = zeros(M3+1, 1);
c = zeros(M3+1, 1);
d = zeros(M3+1, 1);
while gencount < G
for i = 1:S
TCond = LAMDA(i,1);
del = LAMDA(i,2);
for k = 2:N+1
for j = 2:M3
a(j) = -TCond / del_x^2;
b(j) = 1 / del_t + 2 * TCond / del_x^2;
c(j) = -TCond / del_x^2;
d(j) = Temp(j,k-1) / del_t + alpha * J^2 / (dens * Capa);
end
a(1) = 0; b(1) = 1; c(1) = 0; d(1) = temp0;
a(M3+1) = 0; b(M3+1) = 1; c(M3+1) = 0; d(M3+1) = Temp(M3+1,k-1) - del;
Temp(:,k) = TDMAsolver(a, b, c, d);
end
Temp_max_rec(gencount, i) = max(Temp(:,N+1));
Temp_end_rec(gencount, i) = Temp(M3+1, N+1);
end
% Cost calculation
for p = 1:S
PI(gencount, p) = (w1 * (abs(Temp_max_rec(gencount, p) - Temp_max_target) / Temp_max_target)^3) ...
+ (w2 * (abs(Temp_end_rec(gencount, p) - Temp_end_target) / Temp_end_target)^3);
end
% Sorting LAMDA based on PI values
[new_pi, ind] = sort(PI(gencount, :));
PI(gencount, :) = new_pi;
ORIG(gencount, :) = ind;
PI_min(1, gencount) = min(new_pi);
PI_avg(1, gencount) = mean(new_pi);
% Reorder LAMDA based on sorted indices
LAMDA = LAMDA(ind, :);
% Preserve the best P design strings
LAMDA_new = LAMDA(1:P, :);
% Generate new design strings for the next generation
for i = P+1:S
parent1 = LAMDA(randi([1, P]), :);
parent2 = LAMDA(randi([1, P]), :);
child = (parent1 + parent2) / 2; % Simple crossover
mutation_factor = 0.1; % Mutation factor
child = child + mutation_factor * (2 * rand(1, desvar) - 1); % Mutation
LAMDA_new = [LAMDA_new; child];
end
LAMDA = LAMDA_new;
gencount = gencount + 1;
end
% Output results
disp('Minimum cost per generation:');
disp(PI_min);
disp('Average cost per generation:');
disp(PI_avg);
function x = TDMAsolver(a, b, c, d)
% TDMAsolver: TriDiagonal Matrix Algorithm (Thomas Algorithm) solver
% a, b, c are the column vectors for the compressed tridiagonal matrix, d is the right-hand side column vector.
% x is the solution column vector.
n = length(b);
c(1) = c(1) / b(1);
d(1) = d(1) / b(1);
for i = 2:n
temp = b(i) - a(i) * c(i-1);
c(i) = c(i) / temp;
d(i) = (d(i) - a(i) * d(i-1)) / temp;
end
x(n) = d(n);
for i = n-1:-1:1
x(i) = d(i) - c(i) * x(i+1);
end
end
Best,
Umang
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Genetic Algorithm 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!