1.124021 5.5 9.875979 0 0 0.376189
1.717474 5.833333 9.949193 0 2.0e-06 0.406269
2.310404 6.166667 10.022929 0 9.0e-06 0.437133
2.902698 6.5 10.097302 0 4.3e-05 0.468657
3.494207 6.833333 10.17246 0 0.000177 0.500713
4.084734 7.166667 10.248599 0 0.000652 0.533182
4.477745 7.388889 10.300033 0 0.001455 0.555004
5.065991 7.722222 10.378454 0 0.004391 0.587936
5.457105 7.944444 10.431784 0 0.008595 0.609998
5.847164 8.166667 10.486169 2.0e-06 0.015984 0.632136
6.235924 8.388889 10.541854 1.3e-05 0.028261 0.654357
6.490555 8.534934 10.57931 4.1e-05 0.040 0.669016
6.808555 8.717996 10.62744 0.00016 0.060 0.687473
7.008118 8.833333 10.658548 0.000356 0.076166 0.699163
7.199693 8.944444 10.689196 0.000737 0.094688 0.710483
7.390505 9.055556 10.720606 0.001463 0.116333 0.721871
7.571342 9.161331 10.75132 0.002702 0.14 0.732792
7.707905 9.24156 10.77522 0.004197 0.16 0.741136
7.833186 9.315465 10.79775 0.00618 0.18 0.748878
7.957108 9.388889 10.82067 0.008916 0.201356 0.756628
8.110717 9.480406 10.85009 0.013738 0.23 0.766383
8.211082 9.540542 10.87 0.017985 0.25 0.772858
8.328215 9.611111 10.894008 0.02431 0.274598 0.78053
8.443105 9.680786 10.91847 0.032232 0.30 0.788191
8.529915 9.733769 10.93762 0.039539 0.32 0.79408
8.655085 9.810744 10.9664 0.052391 0.35 0.802743
8.735663 9.860704 10.98575 0.062285 0.37 0.80844
8.852923 9.934061 11.0152 0.079214 0.40 0.816918
8.92903 9.98214 11.03525 0.091936 0.42 0.822553
9.040583 10.053372 11.06616 0.113227 0.45 0.831024
9.113456 10.100458 11.08746 0.128911 0.47 0.836707
9.214635 10.166667 11.118699 0.153089 0.498239 0.844815
9.29143 10.217655 11.14388 0.17333 0.52 0.851154
9.380601 10.277778 11.174955 0.198872 0.545578 0.858735
9.464812 10.335597 11.20638 0.224964 0.57 0.86613
9.540967 10.388889 11.236811 0.250145 0.592277 0.873034
9.63501 10.456235 11.27746 0.28319 0.62 0.881863
9.702443 10.505738 11.30903 0.308107 0.64 0.888415
9.803071 10.58185 11.36063 0.346963 0.67 0.898554
9.869875 10.634118 11.39836 0.373712 0.69 0.905533
9.969753 10.715403 11.46105 0.414825 0.72 0.916335
10.03617 10.771939 11.50771 0.442722 0.74 0.923751
10.105323 10.833333 11.561344 0.472071 0.760853 0.931646
10.201916 10.924318 11.64672 0.513286 0.79 0.942893
10.268263 10.991105 11.71395 0.54154 0.81 0.95068
10.334807 11.062372 11.78994 0.569668 0.83 0.958435
10.42447 11.166667 11.908864 0.606991 0.856739 0.968563
10.50379 11.268709 12.03363 0.63922 0.88 0.976902
10.57386 11.368284 12.16271 0.666898 0.90 0.983486
10.647043 11.483703 12.32036 0.694863 0.92 0.989289
10.719233 11.611111 12.502989 0.721378 0.938393 0.993718
10.776016 11.722222 12.668428 0.741413 0.951576 0.996241
10.869256 11.928222 12.98719 0.772617 0.97 0.998711
10.933957 12.089833 13.24571 0.79296 0.98 0.9995
11.025138 12.344552 13.66397 0.819725 0.99 0.999907
11.100291 12.577669 14.05505 0.84007 0.995 0.999984
11.176368 12.833333 14.490299 0.859073 0.99781 0.999998
11.239341 13.058332 14.87732 0.873596 0.999 1
11.327018 13.388889 15.45076 0.892028 0.999713 1
11.41125 13.722222 16.033194 0.907834 0.999928 1
11.492504 14.055556 16.618607 0.921391 0.999984 1
11.57158 14.388889 17.206198 0.933078 0.999997 1
11.649017 14.722222 17.795427 0.943174 0.999999 1
11.725194 15.055556 18.385917 0.951895 1 1
11.800381 15.388889 18.977397 0.959419 1 1
11.874778 15.722222 19.569666 0.965894 1 1
11.948534 16.055556 20.162577 0.971449 1 1
12.021764 16.388889 20.756014 0.976199 1 1 ];
xWT = [5.5,16.5,11,13.8,10.1,14.7,10.4,11.7,9.7,7.3,7.8,8.1,12.2,8.5,11.8,11.7121,11.4083,11.1558,12.4633,12.2761,12.1107,11.9628,11.8291,11.7072,11.5952,11.4917,11.3955,11.3057,11.2214,11.1421]';
yWT = [0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1]';
[b, dev, stats] = glmfit(xWT, [yWT, n], 'binomial', 'Link', 'probit');
[y_fit, dylo, dyhi] = glmval(b, wt, 'probit', stats, 'confidence', 0.95);
gradient = central_diff(y_fit, wt);
plot(xWT(go), yWT(go), 'ko', 'LineWidth', 0.5, 'MarkerFaceColor', 'g', 'MarkerSize', 8)
plot(xWT(nogo), yWT(nogo), 'ks', 'LineWidth', 0.5, 'MarkerFaceColor', 'r', 'MarkerSize', 8)
p1 = plot(wt, y_fit, '-m');
p2 = plot(wt, y_fit - dylo, '-k');
plot(wt, y_fit + dyhi, '-k')
p3 = plot(wt, gradient/max(gradient), '-', 'Color', 0.6*[1,1,1]);
title('Wu and Tian Example')
xlabel('Quantile (q, in units wt)')
ylabel('Probability (p)')
mfw_pos = get(gcf, 'Position'); mfw_pos(3) = mfw_pos(3) * 1.6; set(gcf, 'Position', mfw_pos);
p4 = plot(R_output(:,2), R_output(:,6), '--b');
plot(R_output(:,2), R_output(:,4), '--b')
p5 = plot(R_output(:,1), R_output(:,5), '--r');
plot(R_output(:,3), R_output(:,5), '--r')
legend([p1 p2 p3 p4 p5],{'Logistic Fit','Confidence Bounds from glmval','diff of Logistic Fit','Confidence Interval about p','Confidence Interval about q'}, ...
mdl = fitglm(xWT, yWT, 'Distribution', 'binomial', 'Link', 'probit');
plot(wt, mdl.Link.Inverse([ones(size(wt',1),1,"like",wt') wt'] * ci(:,1)), '-c', 'DisplayName', 'from Matlab coefCI')
plot(wt, mdl.Link.Inverse([ones(size(wt',1),1,"like",wt') wt'] * ci(:,2)), '-c', 'HandleVisibility','off')